Coseismic surface deformation in large earthquakes is typically measured using field mapping and with a range of geodetic methods (e.g., InSAR, lidar differencing, and GPS). Current methods, however, either fail to capture patterns of near-field coseismic surface deformation or lack preevent data. Consequently, the characteristics of off-fault deformation and the parameters that control it remain poorly understood. We develop a standardized method to fully measure the surface, near-field, coseismic deformation patterns at high resolution using the COSI-Corr program by correlating pairs of aerial photographs taken before and after the 1992 M w 7.3 Landers earthquake. COSI-Corr offers the advantage of measuring displacement across the entire zone of surface deformation and over a wider aperture than that available to field geologists. For the Landers earthquake, our measured displacements are systematically larger than the field measurements, indicating the presence of off-fault deformation. We show that 46% of the total surface displacement occurred as off-fault deformation, over a mean deformation width of 154 m. The magnitude and width of off-fault deformation along the rupture is primarily controlled by the macroscopic structural complexity of the fault system, with a weak correlation with the type of near-surface materials through which the rupture propagated. Both the magnitude and width of distributed deformation are largest in stepovers, bends, and at the southern termination of the surface rupture. We find that slip along the surface rupture exhibits a consistent degree of variability at all observable length scales and that the slip distribution is self-affine fractal with dimension of 1.56.
Paleoseismological data suggest the occurrence of four bursts of seismic moment release in the Los Angeles region during the past 12,000 yr. The historic period appears to be part of an ongoing lull that has persisted for about the past 1000 yr. These periods of rapid seismic displacement in the Los Angeles region have occurred during the lulls between similar bursts of activity observed on the eastern California shear zone in the Mojave Desert, which is now seismically active. A kinematic model in which the faults of the greater San Andreas system suppress activity on faults in the eastern California shear zone, and vice versa, can explain the apparent switching of activity between the two fault networks. Combined with the observation that short-term geodetic and longer-term geologic rates co-vary on major southern California fault systems, this suggests that either (1) a temporal cluster of seismic displacements on upper-crustal faults increases ductile deformation on their downward extensions, or (2) rapid ductile slip in the lower crust beneath faults loads the upper crust, driving a seismic cluster. We suggest that alternating periods of rapid seismic displacement may be the expected mode of seismicity when two fault systems accommodate the same plate-boundary motion, and slip on one system suppresses slip on the other.
We present a new three-dimensional model of the major fault systems in southern California. The model describes the San Andreas fault and associated strikeslip fault systems in the eastern California shear zone and Peninsular Ranges, as well as active blind-thrust and reverse faults in the Los Angeles basin and Transverse Ranges. The model consists of triangulated surface representations (t-surfs) of more than 140 active faults that are defined based on surfaces traces, seismicity, seismic reflection profiles, wells, and geologic cross sections and models. The majority of earthquakes, and more than 95% of the regional seismic moment release, occur along faults represented in the model. This suggests that the model describes a comprehensive set of major earthquake sources in the region. The model serves the Southern California Earthquake Center (SCEC) as a unified resource for physics-based fault systems modeling, strong ground-motion prediction, and probabilistic seismic hazards assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.