The basic machinery for the translocation of proteins into or across membranes is remarkably conserved from Escherichia coli to humans. In eukaryotes, proteins are inserted into the endoplasmic reticulum using the signal recognition particle (SRP) and the SRP receptor, as well as the integral membrane Sec61 trimeric complex (composed of alpha, beta and gamma subunits). In bacteria, most proteins are inserted by a related pathway that includes the SRP homologue Ffh, the SRP receptor FtsY, and the SecYEG trimeric complex, where Y and E are related to the Sec61 alpha and gamma subunits, respectively. Proteins in bacteria that exhibit no dependence on the Sec translocase were previously thought to insert into the membrane directly without the aid of a protein machinery. Here we show that membrane insertion of two Sec-independent proteins requires YidC. YidC is essential for E. coli viability and homologues are present in mitochondria and chloroplasts. Depletion of YidC also interferes with insertion of Sec-dependent membrane proteins, but it has only a minor effect on the export of secretory proteins. These results provide evidence for an additional component of the translocation machinery that is specialized for the integration of membrane proteins.
Recent studies identified YidC as a novel membrane factor that may play a key role in membrane insertion of inner membrane proteins (IMPs), both in conjunction with the Sec-translocase and as a separate entity. Here, we show that the type II IMP FtsQ requires both the translocase and, to a lesser extent, YidC in vivo. Using photo-crosslinking we demonstrate that the transmembrane (TM) domain of the nascent IMP FtsQ inserts into the membrane close to SecY and lipids, and moves to a combined YidC/lipid environment upon elongation. These data are consistent with a crucial role for YidC in the lateral transfer of TM domains from the Sec translocase into the lipid bilayer.
Bisulfite sequencing detects 5mC and 5hmC at single-base resolution. However, bisulfite treatment damages DNA, which results in fragmentation, DNA loss, and biased sequencing data. To overcome these problems, enzymatic methyl-seq (EM-seq) was developed. This method detects 5mC and 5hmC using two sets of enzymatic reactions. In the first reaction, TET2 and T4-BGT convert 5mC and 5hmC into products that cannot be deaminated by APOBEC3A. In the second reaction, APOBEC3A deaminates unmodified cytosines by converting them to uracils. Therefore, these three enzymes enable the identification of 5mC and 5hmC. EM-seq libraries were compared with bisulfite-converted DNA, and each library type was ligated to Illumina adaptors before conversion. Libraries were made using NA12878 genomic DNA, cell-free DNA, and FFPE DNA over a range of DNA inputs. The 5mC and 5hmC detected in EM-seq libraries were similar to those of bisulfite libraries. However, libraries made using EM-seq outperformed bisulfite-converted libraries in all specific measures examined (coverage, duplication, sensitivity, etc.). EM-seq libraries displayed even GC distribution, better correlations across DNA inputs, increased numbers of CpGs within genomic features, and accuracy of cytosine methylation calls. EM-seq was effective using as little as 100 pg of DNA, and these libraries maintained the described advantages over bisulfite sequencing. EMseq library construction, using challenging samples and lower DNA inputs, opens new avenues for research and clinical applications.
YidC is a newly defined translocase component that mediates the insertion of proteins into the membrane bilayer. How YidC functions in the insertion process is not known. In this study, we report that the Sec-independent Pf3 coat protein requires the YidC protein specifically for the membrane translocation step. Using photocrosslinking techniques and ribosome-bound Pf3 coat derivatives with an extended carboxyl-terminal region, we found that the transmembrane region of the Pf3 coat protein physically interacts with YidC and the bacterial signal recognition particle Ffh component. We also find that in the insertion pathway, Pf3 coat interacts strongly with YidC only after its transmembrane segment is fully exposed outside the ribosome tunnel. Interaction between Pf3 coat and YidC occurs even in the absence of the proton motive force and with a Pf3 coat mutant that is defective in transmembrane insertion. Our study demonstrates that YidC can directly interact with a Sec-independent membrane protein, and the role of YidC is at the stage of folding the Pf3 protein into a transmembrane configuration.
Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The "NiCo" strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein.Over the past 25 years, several techniques and tools have been developed to express and purify recombinant proteins for protein structure-function studies, for the development of new drugs, or simply for the manufacture of enzymes. The most frequently used method for isolating recombinant protein from a cell lysate in a single purification step is immobilized metal ion affinity chromatography (IMAC). In the simplest application of this method, the target protein is tagged with a polyhistidine sequence (typically 6ϫHis), which mediates chelation to immobilized divalent metal ions such as nickel or cobalt. Other studies have demonstrated that peptides with nonconsecutive histidines are also capable of chelation to immobilized divalent metal ions (5) (U.S. patent 7,176,298 [41] and U.S. patent application 2006/0030007 A1).Escherichia coli is the most commonly used host for highyield expression of recombinant protein, usually by exploiting the high promoter specificity and transcriptional activity of bacteriophage T7 RNA polymerase. However, several E. coli host proteins also contain nonconsecutive histidine residues exposed to the surface of their ternary structure. In addition, metal binding motifs often mediate binding to nickel-and/or cobalt-containing purification resins. Such host proteins are routinely copurified during IMAC procedures and are therefore referred to as "contaminants." Several metal binding proteins that behave as IMAC contaminants have been identified in recent years. For example, Bolanos-Garcia et al. reviewed this issue in detail by classifying the E. coli metal binding proteins according to their affinity for Ni...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.