This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Neuropilin (NRP) expression is highly correlated with poor outcome in multiple cancer subtypes. As known co-receptors for vascular endothelial growth factor receptors (VEGFRs), core drivers of angiogenesis, past investigations have alluded to their functional roles in facilitating tumorigenesis by promoting invasive vessel growth. Despite this, it remains unclear as to whether NRP1 and NRP2 act in a synergistic manner to enhance pathological angiogenesis. Here we demonstrate, using NRP1ECKO, NRP2ECKO and NRP1/NRP2ECKO mouse models, that maximum inhibition of primary tumour development and angiogenesis is achieved when both endothelial NRP1 and NRP2 are targeted simultaneously. Metastasis and secondary site angiogenesis was also significantly inhibited in NRP1/NRP2ECKO animals. Mechanistic studies revealed that co-depleting NRP1 and NRP2 in mouse-microvascular endothelial cells (ECs) stimulates rapid shuttling of VEGFR-2 to Rab7+ endosomes for proteosomal degradation. Our results highlight the importance of targeting both NRP1 and NRP2 to modulate tumour angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.