Single crystals of the van der Waals layered ferrielectric material CuInPS spontaneously phase separate when synthesized with Cu deficiency. Here we identify a route to form and tune intralayer heterostructures between the corresponding ferrielectric (CuInPS) and paraelectric (InPS) phases through control of chemical phase separation. We conclusively demonstrate that Cu-deficient CuInPS forms a single phase at high temperature. We also identify the mechanism by which the phase separation proceeds upon cooling. Above 500 K both Cu and In become mobile, while PS anions maintain their structure. We therefore propose that this transition can be understood as eutectic melting on the cation sublattice. Such a model suggests that the transition temperature for the melting process is relatively low because it requires only a partial reorganization of the crystal lattice. As a result, varying the cooling rate through the phase transition controls the lateral extent of chemical domains over several decades in size. At the fastest cooling rate, the dimensional confinement of the ferrielectric CuInPS phase to nanoscale dimensions suppresses ferrielectric ordering due to the intrinsic ferroelectric size effect. Intralayer heterostructures can be formed, destroyed, and re-formed by thermal cycling, thus enabling the possibility of finely tuned ferroic structures that can potentially be optimized for specific device architectures.
Phase formation in multicomponent rare-earth oxides is determined by a combination of composition, sintering atmosphere, and cooling rate. Polycrystalline ceramics comprising various combinations of Ce, Gd, La, Nd, Pr, Sm, and Y oxides in equiatomic proportions were synthesized using solid-state sintering. The effects of composition, sintering atmosphere, and cooling rate on phase formation were investigated. Single cubic or monoclinic structures were obtained with a slow cooling of 3.3°C/min, confirming that rare-earth oxides follow a different structure stabilization process than transition metal high-entropy oxides. In an oxidizing atmosphere, both Ce and Pr induce a cubic structure, while only Ce plays that role in an inert or reducing atmosphere. Samples without Ce or Pr develop a single monoclinic structure. The structures formed at initial synthesis may be converted to a different one, when the ceramics are annealed in an additional atmosphere. Phase evolution of a five-cation composition was also studied as a function of sintering temperature. The binary oxides used as raw materials completely dissolve into a single cubic structure at 1450°C in air. K E Y W O R D S phase transformations, rare earths, reaction sintering How to cite this article: Pianassola M, Loveday M, McMurray JW, Koschan M, Melcher CL, Zhuravleva M. Solid-state synthesis of multicomponent equiatomic rare-earth oxides. J Am Ceram Soc.
Chloride salts are one candidate for a >700°C concentrating solar power (CSP) cycle, however, many reports from the literature suggest very high reaction rates between chloride salts and structural alloys. Historically, a specific methodology was established for evaluating halide salt compatibility based on solution kinetics. This study returned to that paradigm where the salts are purified and evaluated in sealed capsules before moving to a flowing experiment to determine a true corrosion rate in a temperature gradient for a commercial K–Mg–Na chloride salt. Isothermal testing focused on Ni‐based alloys 230 and 600 at 600°C–800°C. The results indicated there were promising combinations of salt chemistry, temperature, and alloy composition that reduce the extent of reaction. The results of the first monometallic thermal convection loop of alloy 600 run for 1,000 hr with a peak temperature of 700°C showed low attack with rates ≤9 µm/yr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.