Hydrogel networks composed of rippled β-sheet fibrils of coassembled D- and L-Ac-(FKFE)2-NH2 amphipathic peptides exhibit proteolytic stability and increased rheological strength compared to networks of self-assembled L-Ac-(FKFE)2-NH2 pleated β-sheet fibrils. Modifying the ratios of l and d peptides in the coassembled rippled β-sheet fibrils alters the degradation profiles of these hydrogel networks.
The promise of oligonucleotide therapeutic agents to perturb expression of disease-related genes remains unrealized, in part due to challenges with functional cellular delivery of these agents. Herein, we describe disulfide-constrained cyclic amphipathic peptides that complex with short-interfering RNA (siRNA) and affect functional cytosolic delivery and knockdown of target gene products in cell culture and in vivo to mouse lung. Reduction of the constraining disulfide bond and subsequent proteolytic clearance of the peptide are key design features that allow unmasking of the siRNA cargo and presentation to the RNA interference machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.