-The aim of the present work was to provide a synopsis of the scientific literature concerning the effects of different tree species on soil and to quantify the effect of common European temperate forest species on soil fertility. The scientific literature dealing with the tree species effect on soil has been reviewed. The composition of forest overstory has an impact on the chemical, physical and biological characteristics of soil. This impact was highest in the topsoil. Different tree species had significantly different effects on water balance and microclimate. The physical characteristics of soils also were modified depending on the overstory species, probably through modifications of the soil fauna. The rates of organic matter mineralization and nitrification seem to be dependent on tree species. A coniferous species, Picea abies, had negative input-output budgets for some nutrients, such as Ca and Mg. This species promoted a higher soil acidification and a decrease in pH. Thus, it should not be planted in very poor soils in areas affected by acidic atmospheric depositions. Nevertheless, the effect of the canopy species on soil fertility was rarely significant enough to promote forest decline. The impact of a tree species on soil fertility varied depending on the type of bedrock, climate and forest management.forest soils / tree species / fertility / sustainability / resiliency Résumé -Effet des principales essences des forêts tempérées sur la fertilité des sols. L'objectif de cet article est de fournir une synthèse bibliographique au sujet de l'effet des essences sur le sol, et, en particulier, de l'effet des principales essences utilisées en foresterie tempérée. La composition du couvert arboré a une influence importante sur les propriétés physiques, chimiques et biologiques du sol. Cet impact est le plus important dans les horizons superficiels. L'effet des essences se traduit au niveau du pédoclimat, modifiant fortement le bilan hydrique du sol. La modification des paramètres physiques est liée à l'activité biologique, elle même dépendant de nombreux paramètres chimiques et biochimiques. La dégradation de la matière organique (minéralisation) et la nitrification semblent dépendre des essences. L'épicéa commun conduit à une acidification substantielle du sol qui se traduit parfois au niveau du pH ; les bilans d'éléments nutritifs calculés pour cette essence sont le plus souvent négatifs pour des éléments tels Ca et Mg. Cette essence ne doit pas être introduite sur des sols trop pauvres ou affectés par des apports atmosphériques acidifiants. Il faut cependant insister sur le fait que le seul effet des essences n'est jamais tel qu'il puisse conduire au dépérissement des forêts. L'impact des essences sur la fertilité du sol dépend du type de sol, du climat et des aménagements forestiers (essences et traitement).sols forestiers / essences forestières / fertilité des sols / durabilité / résilience Ann. For. Sci. 59 (2002) 233
-The objective of this study was to compare the impact of six tree species on vegetation and soil. Eighty stands growing side by side, and of different dominant species, were selected in 26 locations. Within each location the stands had the same soil condition, landscape position and previous land-use history. Ground vegetation and soil were sampled in each stand. The tree species were: Norway spruce (Picea abies Karsten.), Scots pine (Pinus sylvestris L.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), silver fir (Abies alba Miller), European beech (Fagus sylvatica L.) and oaks (Quercus robur L., Quercus petraea (Matt.) Liebl.). The geographic and geological characteristics of sites influenced the vegetation and the soil chemistry more than the tree species did. Forest management influenced the ground flora more than the tree species did. Number of species and equitability differed little with tree species. The ground flora under Norway spruce included more mosses than under the other trees species except silver fir. The ground flora under Norway spruce was more typical of oligotrophic and acidic conditions than the flora under European beech. Soils under coniferous species, especially Norway spruce, were more acidic and had higher concentrations of aluminium than soils under hardwoods. The effect of tree species on soils was greatest in the topsoil (0-10 cm).acidification / biodiversity / understory / plantation / tree species Résumé -Effet des essences sur la flore et la composition du sol en forêt tempérée. L'objectif de cette étude était de comparer l'effet sur la végétation et le sol de six essences forestières. Quatre-vingts peuplements répartis sur 26 sites ont été sélectionnés. Sur chacun des sites, les peuplements étaient d'essence différente mais comparables en termes de sol, de topographie et de passé cultural. Dans chaque peuplement, le sol a été échantillonné et la végétation a été déterminée. Les essences étaient : l'épicéa commun (Picea abies Karsten.), le pin sylvestre (Pinus sylvestris L.), le sapin Douglas (Pseudotsuga menziesii (Mirb.) Franco), le sapin pectiné (Abies alba Miller), le hêtre (Fagus sylvatica L.) et le chêne (Quercus robur L., Quercus petraea (Matt.) Liebl.). Les caractéristiques géographiques et géologiques des sites ont plus influencé la végétation et la chimie des sols que les essences. La gestion sylvicole a plus d'impact sur la flore accompagnatrice que les essences. La richesse spécifique et l'équitabilité végétales diffèrent peu selon les essences. La strate muscinale des pessières est plus abondante que sous les autres essences, sauf le sapin pectiné. La végétation sous l'épicéa est plus typique de conditions oligotrophes et acides que celle sous le hêtre. Les sols sous les conifères, notamment l'épicéa commun, étaient plus acides et riches en aluminium que les sols sous les feuillus. L'effet des essences sur les sols était essentiellement significatif dans les dix centimètres les plus superficiels. acidification / biodiversité / végétation / plantation / ...
It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance, physical-chemical soil properties and biogeochemical cycling of carbon and nutrients. We used scientific publications based on experimental designs where all species grew on the same parent material and initial soil, and were similar in stage of stand development, former land use and current management. We present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production is usually similar or lower in DA stands than in stands of EGs. Aboveground production of dead organic matter appears to be of the same order of magnitude between tree species groups growing on the same site. Some DAs induce more rapid decomposition of litter than EGs because of the chemical properties of their tissues, higher soil moisture and favourable conditions for earthworms. Forest floors consequently tend to be thicker in EG forests compared to DA forests. Many factors, such as litter lignin content, influence litter decomposition and it is difficult to identify specific litter-quality parameters that distinguish litter decomposition rates of EGs from DAs. Although it has been suggested that DAs can result in higher accumulation of soil carbon stocks, evidence from field studies does not show any obvious trend. Further research is required to clarify if accumulation of carbon in soils (i.e. forest floor + mineral soil) is different between the two types of trees. Production of belowground dead organic matter appears to be of similar magnitude in DA and EG forests, and root decomposition rate lower under EGs than DAs. However there are some discrepancies and still are insufficient data about belowground pools and processes that require further research. Relatively larger amounts of nutrients enter the soil-plant biogeochemical cycle under the influence of EGs than DAs, but recycling of nutrients appears to be slightly enhanced by DAs. Understanding the mechanisms underlying forest ecosystem functioning is essential to predicting the consequences of the expected tree species migration under global change. This knowledge can also be used as a mitigation tool regarding carbon sequestration or management of surface waters because the type of tree species affects forest growth, carbon, water and nutrient cycling.
The quantification of silicon (Si) uptake by tree species is a mandatory step to study the role of forest vegetations in the global cycle of Si. Forest tree species can impact the hydrological output of dissolved Si (DSi) through root induced weathering of silicates but also through Si uptake and restitution via litterfall. Here, monospecific stands of Douglas fir, Norway spruce, Black pine, European beech and oak established in identical soil and climate conditions were used to quantify Si uptake, immobilization and restitution. We measured the Si contents in various compartments of the soil-tree system and we further studied the impact of the recycling of Si by forest trees on the DSi pool. Si is mainly accumulated in leaves and needles in comparison with other tree compartments (branches, stembark and stemwood). The immobilization of Si in tree biomass represents less than 15% of the total Si uptake. Annual Si uptake by oak and European beech stands is 18.5 and 23.3 kg ha -1 year -1 , respectively. Black pine has a very low annual Si uptake (2.3 kg ha -1 year -1 ) in comparison with Douglas fir (30.6 kg ha -1 year -1 ) and Norway spruce (43.5 kg ha -1 year -1 ). The recycling of Si by forest trees plays a major role in the continental Si cycle since tree species greatly influence the uptake and restitution of Si. Moreover, we remark that the annual tree uptake is negatively correlated with the annual DSi output at 60 cm depth. The land-ocean fluxes of DSi are certainly influenced by geochemical processes such as weathering of primary minerals and formation of secondary minerals but also by biological processes such as root uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.