Cyano-bridged homometallic complex [Ni(baepn)(CN)](n)(ClO(4))(n)(1) and bimetallic complex [Ni(baepn)](2)(n)[Fe(CN)(6)](n)(H(2)O)(8)(n)(2) [baepn = N,N'-bis(2-aminoethyl)-1,3-propanediamine] were synthesized and characterized. 1 crystallizes in the monoclinic space group P2(1)/n with a = 9.560(3) A, b = 10.700(3) A, c = 14.138(9) A, beta = 90.18(6) degrees, and Z = 4; 2 crystallizes in the monoclinic space group P2(1)/c with a = 8.951(2) A, b = 13.672(3) A, c = 14.392(3) A, beta = 98.906(4) degrees, and Z = 4. The complex 1 has one-dimensional structure whose chain vector runs along the b axis with baepn ligands and perchlorate anions alternately arranged up and down in the c direction. The antiferromagnetic nature of 1 was explained in terms of the infinite chain model and Haldane gap, giving g = 2.33, J = -29.4 cm(-1), and the magnitude of Haldane gap E(g) = 5.22 K. The complex 2 that constitutes the first example of 2-D bimetallic assembly of Ni(II) ion and ferrocyanide anion is composed of the neutral layers based on the [Ni(4)Fe(4)] square grid spanning in the bc plane. For 2, the analysis with the Curie-Weiss law in 2-300 K range results in THETA = 0.200 K and the magnetism was explained in terms of the ability of ferrocyanide in the -Ni-NC-Fe-CN-Ni unit to promote ferromagnetic Ni-Ni interaction.
A linear complementarity problem formulation combined with an arc-length method is presented for post-buckling analysis of geometrically non-linear structures with frictional contact constraints. The arc-length method with updated normal plane constraint is used to trace the equilibrium paths of the structures after limit points. Under the proportional loading assumption, the unknown load scale parameter used in the arc-length method is expressed in terms of contact forces, and eliminated to formulate as a linear complementarity problem. The unknown contact variables such as contact status and contact forces can be directly solved in this formulation without any ad hoc technique. Complicated non-linear buckling behaviours, such as snap-buckling, can be efficiently solved by the developed method, as shown by several buckling and post-buckling problems with frictional contact constraints.
KEY WORDS post-buckling frictional contact; complementarity; arc-length methodRecently, Kwak et al." -I 3 have derived a linear complementarity problem which is mathematically complete and needs no contact iteration even with friction. This is in contrast with other approaches in the literature such as Kikuchi and Oden,14 well studied in the frame of a variational formulation for friction problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.