A general framework for local control of nonlinearity in nonautonomous systems using feedback strategies is considered in this work. In particular, it is shown that a system exhibiting chaos can be driven to a desired periodic motion by designing a combination of feedforward controller and a time-varying controller. The design of the time-varying controller is achieved through an application of Lyapunov–Floquet transformation which guarantees the local stability of the desired periodic orbit. If it is desired that the chaotic motion be driven to a fixed point, then the time-varying controller can be replaced by a constant gain controller which can be designed using classical techniques, viz. pole placement, etc. A sinusoidally driven Duffing's oscillator and the well-known Rossler system are chosen as illustrative examples to demonstrate the application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.