Aspartate kinase (AK , EC 2.7.2.4) from the thermophilic, phototrophic prokaryote, Chloroflexus aurantiacus, was partially purified and separated from homoserine dehydrogenase (HSDH, EC 1.1.1.3). The molecular weights as determined by gel filtration were 130,000 and 46,000, respectively. HSDH had a moderately high thermal stability (50% inactivation at 84 °C) and displayed its activity optimum at 72 °C. By contrast, AK had its activity optimum at 52 °C (with a break-point in the Arrhenius plot at 42 °C) and was much less thermostable (50% inactivation at 67 °C). The Km-values for aspartate and ATP (determined in a pyruvate kinase-coupled test system) were 10.5 and 0.63 mM , respectively. The enzyme was strongly inhibited by L-threonine (Ki = 10 μm) and activated by alanine, isoleucine, valine and methionine. L-Threonine acted as a mixed-type inhibitor in respect to aspartate, and non-competitively in respect to ATP. Contrary to AKs from Rhodospirillaceae, the enzyme from Chloroflexus aurantiacus was not subject to a concerted feedback inhibition by two amino acids of the aspartate family. The regulatory properties of the aspartate kinase are discussed in relation to the cellular amino acid concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.