There is considerable evidence that the activity of the neuronal dopamine transporter (DAT) is dynamically regulated and a putative implication of its phosphorylation in this process has been proposed. However, there is little information available regarding the nature of physiological stimuli that contribute to the endogenous control of the DAT function. Based on the close relationship between glutamatergic and dopaminergic systems in the striatum, we investigated the modulation of the DAT activity by metabotropic glutamate receptors (mGluRs). Short-term incubations of rat striatal synaptosomes with micromolar concentrations of the group I mGluR selective agonist (S)-3,5-dihydroxyphenylglycine were found to signi®cantly decrease the DAT capacity and ef®ciency. This alteration was completely prevented by a highly selective mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). The effect of (S)-3,5-dihydroxyphenylglycine was also inhibited by staurosporine and by selective inhibitors of protein kinase C and calcium calmodulin-dependent protein kinase II. Co-application of okadaic acid prolonged the transient effect of the agonist, supporting a critical role for phosphorylation in the modulation of the DAT activity by mGluRs. In conclusion, we propose that striatal mGluR5 contribute to the control of the DAT activity through concomitant activation of both protein kinase C and calcium calmodulin-dependent protein kinase II.
The functional coupling of C-terminally truncated mutants of the high affinity rat neurotensin (NT) receptor (NTS1) was characterized in transfected Chinese hamster ovary cells. On cells expressing NTRv v372 (truncated NTS1 lacking the entire 52 amino acid C-terminus), NT failed to promote [ 35 S]guanosine 5P P-[Q Q-35 S]triphosphate binding whereas a robust pertussis toxin (PTx) sensitive response was observed in cells expressing a partially truncated receptor (NTRv v401 lacking the last 23 residues). Similar results were obtained when measuring the ability of NT to induce the production of arachidonic acid. Since neither deletions impaired the NT-induced phosphoinositide hydrolysis, these results indicate that the membrane proximal region of the C-terminus is specifically involved in the functional coupling of the receptor with PTx sensitive G-proteins. This region was also found to be involved in the control of receptor internalization. However, PTx failed to impair internalization, indicating that these two properties are not directly related. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.