In this paper, we introduce the concept of dense scene flow for visual SLAM applications. Traditional visual SLAM methods assume static features in the environment and that a dominant part of the scene changes only due to camera egomotion. These assumptions make traditional visual SLAM methods prone to failure in crowded real-world dynamic environments with many independently moving objects, such as the typical environments for the visually impaired. By means of a dense scene flow representation, moving objects can be detected. In this way, the visual SLAM process can be improved considerably, by not adding erroneous measurements into the estimation, yielding more consistent and improved localization and mapping results. We show large-scale visual SLAM results in challenging indoor and outdoor crowded environments with real visually impaired users. In particular, we performed experiments inside the Atocha railway station and in the city-center of Alcalá de Henares, both in Madrid, Spain. Our results show that the combination of visual SLAM and dense scene flow allows to obtain an accurate localization, improving considerably the results of traditional visual SLAM methods and GPS-based approaches.
The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system.
We present a novel approach for place recognition and loop closure detection based on binary codes and disparity information using stereo images. Our method (ABLE-S) applies the Local Difference Binary (LDB) descriptor in a global framework to obtain a robust global image description, which is initially based on intensity and gradient pairwise comparisons. LDB has a higher descriptiveness power than other popular alternatives such as BRIEF, which only relies on intensity. In addition, we integrate disparity information into the binary descriptor (D-LDB). Disparity provides valuable information which decreases the effect of some typical problems in place recognition such as perceptual aliasing.The KITTI Odometry dataset is mainly used to test our approach due to its varied environments, challenging situations and length. Additionally, a loop closure ground-truth is introduced in this work for the KITTI Odometry benchmark with the aim of standardizing a robust evaluation methodology for comparing different previous algorithms against our method and for future benchmarking of new proposals. Attending to the presented results, our method allows a fast and more effective visual loop closure detection compared to state-of-the-art algorithms such as FAB-MAP, WI-SURF and BRIEF-Gist.
This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study.
This paper presents a non-intrusive approach for monitoring driver drowsiness, based on driver and driving data fusion. The Percentage of Eye Closure (PERCLOS) is used to estimate the driver's state. The PERCLOS is computed on real time using a stereo vision-based system. The driving information used is the lateral position, the steering wheel angle and the heading error provided by the CAN bus. These three signals have been studied in the time and frequency domain. A multilayer perceptron neural network has been trained to fetch an optimal performance score. This system was installed in a naturalistic driving simulator. For evaluation purposes, several experiments were designed by psychologists and carried out with professional drivers. As ground truth, subjective experts' manual annotation of the driver video sequences and driving signals was used. A detection rate of 70% using individual indicators was raised up to 94% with the combination of indicators. An explanation about these results and some conclusion are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.