The effects of isoproterenol (ISO, a non-selective beta-agonist), terbutaline (TER, a selective beta2-agonist), CL316243 (CL, a selective beta3-agonist), and epinephrine (EPI, beta- and alpha2-agonist) on in situ lipolytic response of s.c. adipose tissue were investigated in vivo, using a microdialysis method to measure glycerol release, in 12 adult nonlactating and ovariectomized, underfed Lacaune ewes. All the adrenergic compounds were perfused for 120 min at 10(-6), 10(-5), and 10(-4) M. They had no lipolytic effect at 10(-6) M. Isoproterenol and EPI at 10(-5) and 10(-4) M enhanced, in the same way, maximal response and area under the concentration curve (AUC) of dialysate glycerol, thus suggesting that involvement of alpha2-adrenoceptors in the control of in situ lipolysis is of minor importance in underfed ewes. Terbutaline had only a slight lipolytic effect at 10(-5) M. This low effect could be due to a lower affinity of TER than of ISO for the beta2-adrenoceptors. The beta3-agonist, CL, had no lipolytic effect whatever the concentration perfused. Further studies are needed to prove the putative presence of beta3-adrenoceptors and their possible role in the ovine adipose tissue.
Brown adipose tissue (BAT) is involved in the control of energy balance and has been demonstrated to be activated through beta 3-adrenoceptor (beta 3-AR) occupation in rodents. The ability to specifically activate energy expenditure via this receptor is of great interest for the treatment of obesity. Nevertheless, the extent of BAT and the presence of a functional beta 3-AR in humans are now debated, and this situation is difficult to clarify for evident practical and ethical reasons. We investigated the occurrence of brown adipocytes in fat deposits of prepubertal baboons using antibodies raised against uncoupling protein (UCP) in Western blotting and immunocytology experiments. UCP was detected in all types of fat pads studied and was revealed in multilocular cells. Pericardiac and axillary adipose tissues displayed large amounts of UCP and can be assimilated to typical BAT. Most of the other pads looked like white adipose tissue, but exhibited areas with clusters of brown adipocytes and, thus, can be assimilated to the convertible adipose tissue as previously described in rodents. The presence of beta 3-ARs was evaluated by both beta 2-agonist-stimulated lipolysis and messenger ribonucleic acid (mRNA) expression studies. There was no significant lipolytic effect of any of the beta 3-AR agonists tested (SR 58611A, BRL 37344, CGP 12177, or CL 316243) in either white or brown tissues. PCR analysis demonstrated that beta 3-AR mRNA expression is not related to the UCP content of fat pads and that beta 3-AR expression is low. This study demonstrates the presence of great proportions of brown adipocytes in adipose tissue and the heterogeneity of the fat pads in baboons. The lack of a metabolic effect of beta 3-agonists combined with the weak expression of beta 3-AR mRNAs raise the question of the role of beta 3-ARs in adipose tissues of primates.
In cancer, the lymphatic system is hijacked by tumor cells to escape from primary tumor and to metastasize to the sentinel lymph nodes. Tumor lymphangiogenesis is stimulated by the vascular endothelial growth factors-C (VEGFC) after binding to its receptor VEGFR-3. However, how VEGFC cooperates with other molecules to promote lymphatic neovessels growth is not fully determined. Here, we found that tumor lymphangiogenesis developed in tumoral lesions and in their surrounding adipose tissue (AT). Interestingly, lymphatic vessel density correlated with an increase of circulating free fatty acids (FFA) in the lymph from tumor-bearing mice. We found that adipocyte-released FFA are uploaded by lymphatic endothelial cells (LEC) to stimulate their sprouting. Lipidomic analysis identified the monounsaturated oleic acid (OA) as the major circulating FFA in the lymph in tumoral context. OA transporters FATP-3, -6 and CD36 were only upregulated on LEC in the presence of VEGFC showing a collaborative effect of these molecules. OA released from adipocytes is taken up by LECs to stimulate the fatty acid β-oxidation, leading to increase adipose tissue lymphangiogenesis. Our results provide new insights on the dialogue between tumors and adipocytes via the lymphatic system and identify a key role for adipocyte-derived FFA in the promotion of lymphangiogenesis, revealing novel therapeutic opportunities for inhibitors of lymphangiogenesis in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.