The interdiffusion of lateral composition modulated (GaP)2/(InP) 2 short-period superlattices (SPSs) is reported. The lateral composition modulation is achieved by the strain induced lateral layer ordering (SILO) process. A blueshift in the interband transition is observed by photoluminescence spectroscopy for capless and SiO 2 encapsulated annealed SPSs (800 °C, 5.5 h), while the intensity and wavelength of Si3N4 encapsulated annealed SPSs are only slightly perturbed. From transmission electron microscopy, capless annealed SPSs (800 °C, 5.5 h) retain their lateral composition modulation, however, the (001/2) satellite reflections disappear. For long anneal times (48 h), the interband transition corresponds to that of a In0.50Ga 0.50P alloy, suggesting the lateral composition modulation disappears. The observed lateral interdiffusion coefficient exceeds the vertical by a factor of ∼30, suggesting SPS interdiffusion is enhanced by native point defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.