A method is proposed for the computation of the Riesz-Herglotz transform. Numerical experiments show the effectiveness of this method. We study its application to the computation of integrals over the unit circle in the complex plane of analytic functions. This approach leads us to the integration by Taylor polynomials. On the other hand, with the goal of minimizing the quadrature error bound for analytic functions, in the set of quadrature formulas of Hermite interpolatory type, we found that this minimum is attained by the quadrature formula based on the integration of the Taylor polynomial. These two different approaches suggest the effectiveness of this formula. Numerical experiments comparing with other quadrature methods with the same domain of validity, or even greater such as Szegö formulas, (traditionally considered as the counterpart of the Gauss formulas for integrals on the unit circle) confirm the superiority of the numerical estimations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.