Globular proteins fold such that the hydrophobic groups are packed inside forming hydrophobic clusters, and the hydrophilic groups are present on the surface. In this article we analyze clusters of hydrophobic groups of atoms in 781 protein structures selected from the PDB. Our analysis showed that every structure consists of two types of clusters: at least one large cluster that forms the hydrophobic core and probably dictates the protein fold; and numerous smaller clusters, which might be involved in the stabilization of the fold. We also analyzed the preference of the hydrophobic groups in each of the amino acids toward forming hydrophobic clusters. We find that hydrophobic groups from the hydrophilic amino acids also contribute toward cluster formation.
We have recently developed a computational technique that uses mutually orthogonal Latin square sampling to explore the conformational space of oligopeptides in an exhaustive manner. In this article, we report its use to analyze the conformational spaces of 120 protein loop sequences in proteins, culled from the PDB, having the length ranging from 5 to 10 residues. The force field used did not have any information regarding the sequences or structures that flanked the loop. The results of the analyses show that the native structure of the loop, as found in the PDB falls at one of the low energy points in the conformational landscape of the sequences. Thus, a large portion of the structural determinants of the loop may be considered intrinsic to the sequence, regardless of either adjacent sequences or structures, or the interactions that the atoms of the loop make with other residues in the protein or in neighboring proteins.
The computational identification of all the low energy structures of a peptide given only its sequence is not an easy task even for small peptides,due to the multiple-minima problem and combinatorial explosion. We have developed an algorithm, called the MOLS technique,that addresses this problem, and have applied it to a number of different aspects of the study of peptide and protein structure. Conformational studies of oligopeptides, including loop sequences in proteins have been carried out using this technique. In general the calculations identified all the folds determined by previous studies,and in addition picked up other energetically favorable structures. The method was also used to map the energy surface of the peptides. In another application, we have combined the MOLS technique, using it to generate a library of low energy structures of an oligopeptide, with a genetic algorithm to predict protein structures. The method has also been applied to explore the conformational space of loops in protein structures.Further, it has been applied to the problem of docking a ligand in its receptor site, with encouraging results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.