Helper T cells coordinate immune responses through the production of cytokines. Th2 cells express the closely linked Il4, Il13, and Il5 cytokine genes, whereas these same genes are silenced in the Th1 lineage. The Th1/Th2 lineage choice has become a textbook example for the regulation of cell differentiation, and recent discoveries have further refined and expanded our understanding of how Th2 differentiation is initiated and reinforced by signals from antigen-presenting cells and cytokine-driven feedback loops. Epigenetic changes that stabilize the active or silent state of the Il4 locus in differentiating helper T cells have been a major focus of recent research. Overall, the field is progressing toward an integrated model of the signaling and transcription factor networks, cis-regulatory elements, epigenetic modifications, and RNA interference mechanisms that converge to determine the lineage fate and gene expression patterns of differentiating helper T cells.
Cell differentiation involves activation and silencing of lineage-specific genes. Here we show that the transcription factor Runx3 is induced in T helper type 1 (T(H)1) cells in a T-bet-dependent manner, and that both transcription factors T-bet and Runx3 are required for maximal production of interferon-gamma (IFN-gamma) and silencing of the gene encoding interleukin 4 (Il4) in T(H)1 cells. T-bet does not repress Il4 in Runx3-deficient T(H)2 cells, but coexpression of Runx3 and T-bet induces potent repression in those cells. Both T-bet and Runx3 bind to the Ifng promoter and the Il4 silencer, and deletion of the silencer decreases the sensitivity of Il4 to repression by either factor. Our data indicate that cytokine gene expression in T(H)1 cells may be controlled by a feed-forward regulatory circuit in which T-bet induces Runx3 and then 'partners' with Runx3 to direct lineage-specific gene activation and silencing.
Inflammatory T helper 17 cells in humans are distinguished by selective expression of MDR1 and are enriched in the gut of patients with Crohn’s disease.
Helper T cell differentiation involves silencing as well as activation of gene expression. We have identified a conserved silencer of the gene encoding interleukin 4 (Il4) marked by DNase I hypersensitivity (HS IV) and permissive chromatin structure in all helper T cells. Deletion of HS IV increased Il4 and Il13 transcription by naive T cells and led to T helper type 2 skewing in vitro. HS IV controlled Il4 silencing during T helper type 1 differentiation, as HS IV-deficient T helper type 1 cells that expressed interferon-gamma also produced abundant interleukin 4 in vitro and in vivo. Despite mounting a vigorous interferon-gamma response, HS IV-deficient mice were more susceptible to Leishmania major infection than were wild-type littermate control mice, showing a critical function for Il4 silencing in T helper type 1-mediated immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.