Leptin (Lep), an adipose-derived hormone, exerts very important functions in the body mainly on energy storage and availability. The physiological effects of Lep controlling the body weight and suppressing appetite are mediated by the long form of Lep receptor in the hypothalamus. Lep receptor activates several downstream molecules involved in key pathways related to cell survival such as STAT3, PI3K, MAPK, AMPK, CDK5 and GSK3b. Collectively, these pathways act in a coordinated manner and form a network that is fully involved in Lep physiological response. Although the major interest in Lep is related to its role in the regulation of energy balance, and since resistance to Lep affects is the primary risk factor for obesity, the interest on their effects on brain cognition and neuroprotection is increasing. Thus, Lep and Lep mimetic compounds now await and deserve systematic exploration as the orchestrator of protective responses in the nervous system. Moreover, Lep might promote the activation of a cognitive process that may retard or even partially reverse selected aspects of Alzheimer's disease or ageing memory loss.
Melatonin has been shown to down-regulate inflammatory responses and provide neuroprotection. However, the mechanisms underlying the anti-inflammatory properties of melatonin are poorly understood. In the present work, we studied the modulatory effect of melatonin against pro-inflammatory cytokines in glial cell cultures. Treatment with pro-inflammatory cytokines mainly tumor necrosis factor-alpha, interleukin 1-beta, and interferon-gamma induces an increase in inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production. Pre-treatment with melatonin produced an inhibitory effect on iNOS expression and NO production. The biochemical studies revealed that cytokine treatment favors the activation of several pathways, such as mitogen-activated protein kinases (MAPKs), STAT1, and STAT3; however, the anti-inflammatory effect of melatonin was accompanied only by a decrease in p38 MAPK activity. Likewise, SB203580 a p38 kinase inhibitor inhibits NO production. These data indicate that the anti-inflammatory action of melatonin in glial cells after stimulation with pro-inflammatory cytokines may be in part, attributable to p38 inhibition which down-regulates iNOS expression and NO production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.