The conventional methodologies used for the detection of human papillomavirus (HPV) present actually robust and reproducible advantages. However, at the same time, they involve complex protocols that sometimes are difficult to popularize. Over the first half of XX century, the adequate treatment of complex and delicate processes from a simple instrumental base seemed a fundamental and intrinsic contradiction. However, interdisciplinary trends have allowed the manipulation of tissues, proteins, and nucleic acids through innovative increasingly smaller devices. The proper diagnosis of HPV has seen great advances since biosensor researchers are employing its virus strains as models to study the interactions between the biorecognition element and the transducer. Additionally, all recent improvements and trends that material sciences, biotechnology, and data processing scientists excel for biosensors can be applied for the HPV detection platforms. In this review, we highlight the recent trends on materials, nanomaterials, and transducers for the specific detection and differentiation of HPV strains. The most influential methods for the detection and identification of these papillomaviruses include optical, electrochemical, and piezoelectric transducers; we will visit their sensibility and advantages. Additionally, we highlight the factors that contributed to the increasing importance of these biodevices as potential substitutes to conventional diagnostic methods.
The projection of new biosensing technologies for genetic identification of SARS-COV-2 is essential in the face of a pandemic scenario. For this reason, the current research aims to develop a label-free flexible biodevice applicable to COVID-19. A nanostructured platform made of polypyrrole (PPy) and gold nanoparticles (GNP) was designed for interfacing the electrochemical signal in miniaturized electrodes of tin-doped indium oxide (ITO). Oligonucleotide primer was chemically immobilized on the flexible transducers for the biorecognition of the nucleocapsid protein (N) gene. Methodological protocols based on cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the nanotechnological apparatus. The biosensor’s electrochemical performance was evaluated using the SARS-CoV-2 genome and biological samples of cDNA from patients infected with retrovirus at various disease stages. It is inferred that the analytical tool was able to distinguish the expression of SARS-CoV-2 in patients diagnosed with COVID-19 in the early, intermediate and late stages. The biosensor exhibited high selectivity by not recognizing the biological target in samples from patients not infected with SARS-CoV-2. The proposed sensor obtained a linear response range estimated from 800 to 4000 copies µL
-1
with a regression coefficient of 0.99, and a detection limit of 258.01 copies µL
-1
. Therefore, the electrochemical biosensor based on flexible electrode technology represents a promising trend for sensitive molecular analysis of etiologic agent with fast and simple operationalization. In addition to early genetic diagnosis, the biomolecular assay may help to monitor the progression of COVID-19 infection in a novel manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.