Plant-derived diterpenoids serve as important pharmaceuticals,f ood additives,a nd fragrances,y et their low natural abundance and high structural complexity limits their broader industrial utilization. By mimicking the modularity of diterpene biosynthesis in plants,w ec onstructed 51 functional combinations of class Iand II diterpene synthases,41ofwhich are "new-to-nature". Stereoselective biosynthesis of over 50 diterpene skeletons was demonstrated, including natural variants and novel enantiomeric or diastereomeric counterparts. Scalable biotechnological production for four industrially relevant targets was accomplished in engineered strains of Saccharomyces cerevisiae.
Paclitaxel (Taxol®) is a potent anticancer agent, but the widespread pharmaceutical use of paclitaxel is hampered by its limited availability due to low accumulation levels in the native yew (Taxus spp.) plants. Currently, hairy root culture is an emerging biotechnological tool that presents several advantages such as reduced costs and higher specialized metabolite production, therefore, its application to paclitaxel production can be of commercial and medicinal interest. The objective of present study was to induce hairy root in Taxus baccata L. by transformation with the wild type Rhizobium rhizogenes A4 strain. Thus, T. baccata was inoculated by three different inoculation methods: (a) ex vitro seedlings inoculation by direct injection of a liquid bacterial culture; (b) ex vitro needles inoculation by liquid co-culturing with bacteria; (c) ex vitro shoots inoculation by dipping liquid bacterial culture. Hairy roots were formed only from ex vitro seedlings inoculated by the direct inoculation method, with transformation efficiency of 14.3%. Formation of hairy roots was observed two months after inoculation. This project forms the basis for the establishment of hairy root cultures from T. baccata for the production of paclitaxel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.