Background: Shigella spp. and enterotoxigenic Escherichia coli (ETEC) remain the two leading bacterial causes of diarrheal diseases worldwide. Attempts to develop preventive vaccines against Shigella and ETEC have not yet been successful. The major challenge for a broad Shigella vaccine is the serotype-specific immune response to the otherwise protective LPS O-antigen. ETEC vaccines mainly rely on the heat-labile enterotoxin (LT), while heat-stable toxin (ST) has also been shown to be an important virulence factor. Methods: We constructed a combined Shigella and ETEC vaccine (ShigETEC) based on a live attenuated Shigella strain rendered rough and non-invasive with heterologous expression of two ETEC antigens, LTB and a detoxified version of ST (STN12S). This new vaccine strain was characterized and tested for immunogenicity in relevant animal models. Results: Immunization with ShigETEC resulted in serotype independent protection in the mouse lung shigellosis model and induced high titer IgG and IgA antibodies against bacterial lysates, and anti-ETEC toxin antibodies with neutralizing capacity. Conclusions: ShigETEC is a promising oral vaccine candidate against Shigella and ETEC infections and currently in Phase 1 testing.
Background: Shigella spp. and enterotoxigenic Escherichia coli (ETEC) cause high morbidity and mortality worldwide, yet no licensed vaccines are available to prevent corresponding infections. A live attenuated non-invasive Shigella vaccine strain lacking LPS O-antigen and expressing the ETEC toxoids, named ShigETEC was characterized previously in non-clinical studies. Methods: ShigETEC was evaluated in a two-staged, randomized, double-blind and placebo-controlled Phase I clinical trial. A single dose of increasing amounts of the vaccine was given to determine the maximum tolerated dose and increasing number of immunizations were administered with an interval based on the duration of shedding observed. Results: Oral immunization with ShigETEC was well tolerated and safe up to 4-time dosing with 5 × 1010 colony forming units. ShigETEC induced robust systemic immune responses against the Shigella vaccine strain, with IgA serum antibody dominance, as well as mucosal antibody responses evidenced by specific IgA in stool samples and in ALS (Antibodies in Lymphocyte Supernatant). Anti- ETEC toxin responses were detected primarily in the 4-times immunized cohort and for the heat-labile toxin correlated with neutralizing capacity. Conclusion: ShigETEC is a promising vaccine candidate that is scheduled for further testing in controlled human challenge studies for efficacy as well as in children in endemic setting for safety and immunogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.