While animal studies have demonstrated a unique reproduction-related neuroplasticity, little is known on the effects of pregnancy on the human brain. Here we investigated whether pregnancy is associated with changes to resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture using a comprehensive pre-conception cohort study. We show that pregnancy leads to selective and robust changes in neural architecture and neural network organization, which are most pronounced in the Default Mode Network. These neural changes correlated with pregnancy hormones, primarily third-trimester estradiol, while no associations were found with other factors such as osmotic effects, stress and sleep. Furthermore, the changes related to measures of maternal-fetal bonding, nesting behavior and the physiological responsiveness to infant cues, and predicted measures of mother-infant bonding and bonding impairments. These findings suggest there are selective pregnancy-related modifications in brain structure and function that may facilitate peripartum maternal processes of key relevance to the mother-infant dyad.
Neuroimaging and transcranial magnetic stimulation (TMS) studies have implicated a dorsal fronto-parietal network in endogenous attention control and a more ventral set of areas in exogenous attention shifts. However, the extent and circumstances under which these cortical networks overlap and/or interact remain unclear. Crucially, whereas previous studies employed experimental designs that tend to confound exogenous with endogenous attentional engagement, we used a cued target discrimination paradigm that behaviourally dissociates exogenous from endogenous attention processes. Participants engaged with endogenous attention cues, while simultaneous apparent motion cues were driving exogenous attention along the motion path towards or away from the target position. To interfere with dorsal or ventral attention networks, we delivered neuronavigated double-pulse TMS over either right intraparietal sulcus (rIPS) or right temporo-parietal junction (rTPJ) towards the end of the cue target interval, and compared the effects to a sham-TMS condition. For sham-TMS, endogenous and exogenous cueing both benefitted discrimination accuracy. Target discrimination was enhanced at validly versus invalidly cued locations (endogenous cueing benefit) as well as when targets appeared in versus out of the motion path (exogenous cueing benefit), despite motion being uninformative and task-irrelevant, replicating previous findings. Interestingly, both rIPS-and rTPJ-TMS abolished attention benefits from exogenous cueing, while endogenous cueing benefits were unaffected. Our findings provide evidence against independent involvement of the dorsal and ventral attention network nodes in exogenous attention processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.