The Sample Analysis at Mars (SAM) instrument suite aboard Curiosity has detected chlorinated organic compounds in Martian sediment samples. The chlorine in these molecules is thought to derive from oxychlorine salts in Martian sediments, but the carbon source remains under investigation. To constrain possible carbon sources, we investigated how the composition and concentration of oxychlorine phases in solid samples affect organic molecules released from the Tenax traps on board SAM. We created Mars analogue soils by spiking olivine sand with calcium perchlorate, magnesium perchlorate, or ferric iron chloride and analyzed the volatiles generated during pyrolysis-gas chromatography-mass spectrometry using commercial instruments operated under SAM-like conditions, with and without a Tenax trap. Benzoic acid, phthalic anhydride, high molecular weight aromatics, and chlorobenzenes are produced from the trap in response to volatiles released during Cl salt pyrolysis. Changes in composition or concentration of oxychlorine phases between samples could thus potentially produce an increase in chlorobenzene, as observed between samples from Rocknest and Cumberland. However, in our experiments benzoic acid, phthalic anhydride, and chlorobenzenes increase in proportion with the amount of HCl sent to the trap, while in Cumberland samples the chlorobenzene increase showed no corresponding increase in HCl. Based on our experiments, the Tenax trap is a possible source of the traces of chlorobenzene observed at Rocknest, John Klein, and Confidence Hills. The order-of-magnitude higher chlorobenzene abundances observed at Cumberland cannot be attributed to the Tenax trap. Furthermore, we found no evidence of significant trap degradation after hundreds of experiments with Cl salt-containing analogue soils.
The occurrence and distribution of archaeal and bacterial glycerol dialkyl glycerol tetraether lipids (GDGTs) in continental saline environments have been rarely investigated. Here, the abundance and distribution of archaeal isoprenoid GDGTs (iGDGTs) and archaeol, and of bacterial branched GDGTs (brGDGTs) in four tropical water ponds of contrasting salinity in two islands from the French Western Indies, Grande-Terre and La Désirade, have been determined. The sedimentary distribution of the GDGTs strongly differed between the two islands. Caldarchaeol was largely predominant among iGDGTs in the (hyper)saline ponds from Grande-Terre, suggesting a substantial contribution of iGDGTs derived from methanogenic Archaea. In contrast, both caldarchaeol and crenarchaeol were present in high relative abundance in the low salinity ponds from La Désirade, suggesting that iGDGTs were derived from mixed archaeal communities. In addition, the relative proportion of the most methylated brGDGTs was much higher in Grande-Terre ponds than in La Désirade ponds. The applicability of different proxies based on GDGTs and archaeol was tested for these specific environments. The relative abundance of archaeol vs. caldarchaeol (ACE index) was
The Sample Analysis at Mars (SAM) experiment on the National Aeronautics and Space Administration Curiosity rover seeks evidence of organic compounds on the surface of Mars. Since the beginning of the mission, various organic molecules have been detected and identified. While several have been demonstrated to be indigenous to the Martian soil and rocks analyzed, others appear to have been produced from sources internal to the experiment. The objective of this study is to build an exhaustive molecular database to support the interpretation of SAM results by identifying all the chemical species produced from Tenax® adsorbents, by determining (1) the thermal degradation by-products of Tenax®, (2) the effect of Tenax® conditioning on the formation of Tenax® by-products, (3) the impact of MTBSTFA or a mixture of MTBSTFA and DMF on Tenax® decomposition, and (4) the reaction between Tenax® and calcium perchlorate. Our results indicate that the by-products of the SAM trap are due to the impact of trap heating, the impact of the derivatization reagent (MTBSTFA) and the presence of perchlorate in Martian soil. Some of these by-products are observed in the SAM gas chromatograph mass spectrometer data from Mars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.