Cell-free protein synthesis (CFPS) systems were designed to produce proteins with a minimal set of purified components, thus offering the possibility to follow translation as well as protein folding. In order to characterize the performance of the ribosomes in such a system, it is crucial to separately quantify the two main components of productivity, namely the fraction of active ribosomes and the number of synthesizing cycles. Here, we provide a direct and highly reliable measure of ribosomal activity in any given CFPS system, introducing an enhanced-arrest peptide variant. We observe an almost complete stalling of ribosomes that produce GFPem (~95%), as determined by common centrifugation techniques and fluorescence correlation spectroscopy (FCS). Moreover, we thoroughly study the effect of different ribosomal modifications independently on activity and number of synthesizing cycles. Finally, employing two-colour coincidence detection and two-colour colocalisation microscopy, we demonstrate real-time access to key productivity parameters with minimal sample consumption on a single ribosome level.
The investigation and understanding of the folding mechanism of multidomain proteins is still a challenge in structural biology. The use of single-molecule Fö rster resonance energy transfer offers a unique tool to map conformational changes within the protein structure. Here, we present a study following denaturant-induced unfolding transitions of yeast phosphoglycerate kinase by mapping several inter-and intradomain distances of this two-domain protein, exhibiting a quite heterogeneous behavior. On the one hand, the development of the interdomain distance during the unfolding transition suggests a classical twostate unfolding behavior. On the other hand, the behavior of some intradomain distances indicates the formation of a compact and transient molten globule intermediate state. Furthermore, different intradomain distances measured within the same domain show pronounced differences in their unfolding behavior, underlining the fact that the choice of dye attachment positions within the polypeptide chain has a substantial impact on which unfolding properties are observed by single-molecule Fö rster resonance energy transfer measurements. Our results suggest that, to fully characterize the complex folding and unfolding mechanism of multidomain proteins, it is necessary to monitor multiple intra-and interdomain distances because a single reporter can lead to a misleading, partial, or oversimplified interpretation.
Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.