Abstract. We analyze a quasi-Monte Carlo method to solve the initial-value problem for a system of differential equations y (t) = f(t, y(t)). The function f is smooth in y and we suppose that f and D 1 y f are of bounded variation in t and that D 2 y f is bounded in a neighborhood of the graph of the solution. The method is akin to the second order Heun method of the Runge-Kutta family. It uses a quasi-Monte Carlo estimate of integrals. The error bound involves the square of the step size as well as the discrepancy of the point set used for quasi-Monte Carlo approximation. Numerical experiments show that the quasi-randomized method outperforms a recently proposed randomized numerical method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.