The anaerobic bacterium Clostridium perfringens mediates clostridial myonecrosis, or gas gangrene, by producing a number of extracellular toxins and enzymes. Transposon mutagenesis with Tn916 was used to isolate a pleiotropic mutant of C. perfringens that produced reduced levels of phospholipase C, protease and sialidase, and did not produce any detectable perfringolysin O activity. Southern hybridization revealed that a single copy of Tn916 had inserted into a 2.7 kb HindIII fragment in the C. perfringens chromosome. A 4.3kb PstI fragment, which spanned the Tn916 insertion site, was cloned from the wild-type strain. When subcloned into a shuttle vector and introduced into C. perfringens this fragment was able to complement the Tn916-derived mutation. Transformation of the mutant with plasmids containing the 2.7 kb HindIII fragment, or the 4.3 kb PstI fragment, resulted in toxin and enzyme levels greater than or equal to those of the wild-type strain. The PstI fragment was sequenced and found to potentially encode seven open reading frames, two of which appeared to be arranged in an operon and shared sequence similarity with members of two-component signal transduction systems. The putative virR gene encoded a protein with a deduced molecular weight of 30,140, and with sequence similarity to activators in the response regulator family of proteins. The next gene, virS, into which Tn916 had inserted, was predicted to encode a membrane-spanning protein with a deduced molecular weight of 51,274. The putative VirS protein had sequence similarity to sensor proteins and also contained a histidine residue highly conserved in the histidine protein kinase family of sensor proteins. Virulence studies carried out using a mouse model implicated the virS gene in the pathogenesis of histotoxic C. perfringens infections. It was concluded that a two-component sensor regulator system that activated the expression of a number of extracellular toxins and enzymes involved in virulence had been cloned and sequenced. A model that described the regulation of extracellular toxin production in C. perfringens was constructed.
Extracellular toxin production in Clostridium perfringens is positively regulated by the two-component regulatory genes virR and virS. Northern (RNA) blots carried out with RNA preparations from the wild-type strain 13 and the isogenic virR and virS mutants TS133 and JIR4000 showed that the virR and virS genes composed an operon and were transcribed as a single 2.1-kb mRNA molecule. Primer extension analysis led to the identification of two promoters upstream of virR. Hybridization analysis of the mutants and their complemented derivatives showed that the virR/virS system positively regulated the production of alpha-toxin (or phospholipase C), theta-toxin (perfringolysin O), and kappa-toxin (collagenase) at the transcriptional level. However, the modes of regulation of these genes were shown to differ. The theta-toxin structural gene, pfoA, had both a major and a very minor promoter, with the major promoter being virR/virS dependent. The colA gene, which encodes the kappa-toxin, had two major promoters, only one of which was virR/virS-dependent. In contrast, the alpha-toxin structural gene, plc, had only one promoter, which was shown to be partially regulated by the virR and virS genes. Comparative analysis of the virR/virS-dependent promoters did not reveal any common sequence motifs that could represent VirR-binding sites. It was concluded that either the virR/virS system modulates its effects via secondary regulatory genes that are specific for each toxin structural gene or the VirR protein does not have a single consensus binding sequence.
A tandemly repeated 1,046-base-pair (bp) ClaI DNA fragment from Bordetella pertussis was cloned into Escherichia coli by using the vector pUC19. This fragment, when isolated, hybridized strongly to DNA from all 100 clinical isolates of B. pertussis tested. It was shown to have homology to single-copy sequences in Bordetella bronchiseptica but not Bordetella parapertussis and did not hybridize to lysate blots of a wide range of other bacteria, including members of the closely related genera Pasteurella, Alcaligenes, and Haemophilus. The 1,046-bp fragment was sequenced, and complementary synthetic oligonucleotides flanking a 153-bp region within the repeated element were used as primers for specific amplification of this region using the polymerase chain reaction (PCR). This procedure was then applied to the rapid (5-h) detection of B. pertussis in nasopharyngeal secretions collected from 332 children with suspected pertussis. The test yielded positive results in a total of 98 samples, compared with 66 for culture and 33 for direct immunofluorescence (IF). All of the IF-positive samples were PCR positive, as were 63 of the samples from which B. pertussis was eventually cultured. Two hundred thirty-one specimens which were negative by IF and culture were also negative in the PCR assay. However, 33 culture- and IF-negative specimens were positive by PCR assay. Several of these specimens were collected from close contacts of culture-proven pertussis patients, were follow-up specimens from such patients, or were from patients with serological evidence of pertussis and therefore may be true-rather than false-positives.
The phospholipase D (PLD) gene from Corynebacterium pseudotuberculosis has been cloned, sequenced, and expressed in Escherichia coli. Analysis of DNA sequence data reveals a major open reading frame encoding a 31.4-kilodalton protein, a size consistent with that estimated for the PLD protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparison of these data with the amino-terminal protein sequence indicates that the mature PLD protein is preceded by a 24-residue signal sequence. Expression of the PLD gene in E. coli is initiated from the corynebacterial promoter, and the resulting protein has sphingomyelinase activity. Primer extension mapping localized the 5' end of the PLD gene mRNA to a site 5 to 7 base pairs downstream of a region similar to the consensus sequence for E. coli promoters. Northern and Southern blot analyses suggest that the gene is transcribed from mRNA approximately 1.1 kilobases in length and that it is present in a single copy within the C. pseudotuberculosis genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.