We study the deformation of the horizon-vicinity geometry caused by quantum gravitational effects. Departure from the semi-classical picture is noted, and the fact that the matter part of the action comes at a higher order in Newton's constant than does the Einstein-Hilbert term is crucial for the departure. The analysis leads to a Firewalltype energy measured by an infalling observer for which quantum generation of the cosmological constant is critical. The analysis seems to suggest that the Firewall should be a part of such deformation and that the information be stored both in the horizon-vicinity and asymptotic boundary region. We also examine the behavior near the cosmological horizon.
In a series of recent works the relevance of gravitational boundary degrees of freedom and their dynamics in gravity quantization and black hole information has been explored. In this work we further the progress by keenly focusing on the boundary degrees of freedom as the origin of black hole entropy. Wald's entropy formula is scrutinized, and the reason that the Wald's formula correctly captures the entropy of a black hole is examined. Afterwards, limitations of the Wald's method are discussed; a coherent view of entropy based on boundary dynamics is presented. The discrepancy observed in the literature between holographic and Wald's entropies is addressed. We generalize the entropy definition so as to handle a time-dependent black hole. Large gauge symmetry plays a pivotal role. Non-Dirichlet boundary conditions and gravitational analogues of Coleman-De Luccia bounce solutions are central in identifying the microstates and differentiating the origins of entropies associated with different classes of solutions. The result in the present work leads to a view that black hole entropy is entanglement entropy in a thermodynamic setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.