This cohort study examines the internal jugular vein flow and morphology of crew members of the International Space Station and the use of lower body negative pressure as a countermeasure to the headward fluid shift experienced during space flight.
The objective of this investigation was to identify the major cardiovascular changes induced by exposure to real or simulated Og (spaceflights: 6, 14, 21 and 25 days, and 6 months; head down tilt, HDT: 10 h, 4, 5, 7, 30 and 42 days), with a minimum of counter-measures. The following cardiovascular data were measured by echocardiography and Doppler ultrasonography: left ventricle end-diastolic volume (LVDV), stroke volume (SV), cardiac output (CO), ejection fraction (EF), middle cerebral artery flow velocity (Qca), femoral artery flow velocity (Qfa), cerebral vascular resistance (Rca), femoral vascular resistance (Rfa), jugular vein cross-sectional area (Ajv), femoral vein cross-sectional area (Afv), heart rate (HR), and mean blood pressure (MBP). LVDV remained decreased compared to pre-HDT or pre-flight levels after 1 week of spaceflight or HDT (-8 to -13%, P<0.05), EF did not change. HR tended to increase (5-10%) during spaceflight and HDT, whereas MBP tended to decrease during flight, but did not change in HDT. These findings are consistent with the existence of a moderate and stable hypovolemia. Qca and Rca fluctuated between +10 and -10% from pre-HDT or pre-flight values, and always showed opposing variations. There was no significant decrease in cerebral perfusion. Lower-limb resistance (Rfa) remained decreased (-5% to -18%, P<0.05) throughout the flights or HDT after week 1. Ajv remained significantly enlarged (+40% P < 0.05) after 1 week in spaceflight or in HDT. Afv was enlarged in spaceflight after week 1 (+15% to +35%, P<0.05), whereas it decreased after 4-5 days of HDT (-20% to -35%, P<0.05). The cardiovascular system reached a new and stable equilibrium during flight and HDT within less than 1 week. With the exception of the femoral vein, there was no significant difference in either the amplitude or the time course of the cardiovascular changes in both situations after 1 week.
The objectives of this investigation were to study the effects of thigh cuffs (bracelets) on cardiovascular adaptation and deconditioning in 0 g. The cardiovascular parameters of six cosmonauts were measured by echocardiography, Doppler, and plethysmography, during three 6-month MIR spaceflights. Measurements were made at rest during preflight (-30 days), inflight (1, 3-4, and 5-5.5 months) without cuffs (morning) and after 5 h with cuffs, and during postflight (+3 and +7 days). Lower-body negative pressure (LBNP) measurements were performed 1 day after each resting session. Inflight values of left ventricle end-diastolic volume and stroke volume measured without the thigh cuffs (-8 to -24% and -10 to -16%, respectively, both P < 0.05) were lower than corresponding preflight values. The jugular and femoral vein cross-sectional areas (Ajv and Afv, respectively) were enlarged (Ajv: by 23-30%, P < 0.001; Afv: by 33-70% P < 0.01). The renal and femoral vascular resistances (Rra and Rfa, respectively) decreased (Rra: by -15 to -16%, P < 0.01; Rfa: by -5 to -11%, P < 0.01). Inflight, the thigh cuffs reduced the Ajv (by -12 to -20%, P < 0.02), but enlarged the Afv (Afv: by 9-20%, P < 0.02) and increased the vascular resistance (Rra: by 8-13%, P < 0.05; Rfa: by 10-16%, P < 0.01) compared to corresponding inflight, without-cuffs values. During LBNP (-45 mmHg, where 1 mmHg = 133.3 N/ m2), Rfa and the ratio between cerebral and femoral blood flow (Qca/Qfa) increased less inflight and postflight (+25% for Rfa and +30% for Qca/Qfa) than during preflight (60% for Rfa and 75% for Qca/Qfa, P < 0.01). This reduced vasoconstrictive response and less efficient flow redistribution toward the brain was associated with orthostatic intolerance during postflight stand tests in all of the cosmonauts. The calf circumference increased less inflight and postflight (6% P < 0.05) than preflight (9% P < 0.05). The vascular response to LBNP remained similarly altered throughout the flight. The thigh cuffs compensated partially for the cardiovascular changes induced by exposure to 0 g, but did not interfere with 0 g deconditioning.
Thigh cuffs, presently named "bracelets," consist of two straps fixed to the upper part of each thigh, applying a pressure of 30 mmHg. The objective was to evaluate the cardiac, arterial, and venous changes in a group of subjects in head-down tilt (HDT) for 7 days by using thigh cuffs during the daytime, and in a control group not using cuffs. The cardiovascular parameters were measured by echography and Doppler. Seven days in HDT reduced stroke volume in both groups (-10%; P < 0.05). Lower limb vascular resistance decreased more in the cuff group than in the control group (-29 vs. -4%; P < 0.05). Cerebral resistance increased in the control group only (+6%; P < 0.05). The jugular vein increased (+45%; P < 0.05) and femoral and popliteal veins decreased in cross-sectional area in both groups (-45 and -8%, respectively; P < 0.05). Carotid diameter tended to decrease (-5%; not significant) in both groups. Heart rate, blood pressure, cardiac output, and total resistance did not change significantly. After 8 h with thigh cuffs, the cardiac and arterial parameters had recovered their pre-HDT level except for blood pressure (+6%; P < 0.05). Jugular vein size decreased from the pre-HDT level (-21%; P < 0.05), and femoral and popliteal vein size increased (+110 and +136%, respectively; P < 0.05). The thigh cuffs had no effect on the development of orthostatic intolerance during the 7 days in HDT.
IMPORTANCECountermeasures that reverse the headward fluid shift experienced in weightlessness have the potential to mitigate spaceflight-associated neuro-ocular syndrome. This study investigated whether use of the countermeasure lower-body negative pressure during spaceflight was associated with changes in ocular structure.OBJECTIVE To determine whether changes to the optic nerve head and retina during spaceflight can be mitigated by brief in-flight application of 25-mm Hg lower-body negative pressure. DESIGN, SETTING, AND PARTICIPANTSIn the National Aeronautics and Space Administration's "Fluid Shifts Study," a prospective cohort study, optical coherence tomography scans of the optic nerve head and macula were obtained from US and international crew members before flight, in-flight, and up to 180 days after return to Earth. In-flight scans were obtained both under normal weightless conditions and 10 to 20 minutes into lower-body negative pressure exposure. Preflight and postflight data were collected in the seated, supine, and head-down tilt postures. Crew members completed 6-to 12-month missions that took place on the International Space Station. Data were analyzed from 2016 to 2021. INTERVENTIONS OR EXPOSURESSpaceflight and lower-body negative pressure. MAIN OUTCOMES AND MEASURESChanges in minimum rim width, optic cup volume, Bruch membrane opening height, peripapillary total retinal thickness, and macular thickness.RESULTS Mean (SD) flight duration for the 14 crew members (mean [SD] age, 45 [6] years; 11 male crew members [79%]) was 214 (72) days. Ocular changes on flight day 150, as compared with preflight seated, included an increase in minimum rim width (33.8 μm; 95% CI, 27.9-39.7 μm; P < .001), decrease in cup volume (0.038 mm 3 ; 95% CI, 0.030-0.046 mm 3 ; P < .001), posterior displacement of Bruch membrane opening (−9.0 μm; 95% CI, −15.7 to −2.2 μm; P = .009), and decrease in macular thickness (fovea to 500 μm, 5.1 μm; 95% CI, 3.5-6.8 μm; P < .001). Brief exposure to lower-body negative pressure did not affect these parameters.CONCLUSIONS AND RELEVANCE Results of this cohort study suggest that peripapillary tissue thickening, decreased cup volume, and mild central macular thinning were associated with long-duration spaceflight. Acute exposure to 25-mm Hg lower-body negative pressure did not alter optic nerve head or retinal morphology, suggesting that longer durations of a fluid shift reversal may be needed to mitigate spaceflight-induced changes and/or other factors are involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.