The ability of alpha, alpha-di-n-alkyl glycines with linear and cyclic alkyl side chains to stabilize helical conformations has been compared using a model heptapeptide sequence. The conformations of five synthetic heptapeptides (Boc-Val-Ala-Leu-Xxx-Val-Ala-Leu-OMe, Xxx = Ac8c, Ac7c, Aib, Dpg, and Deg, where Ac8c = 1-aminocyclooctane-1-carboxylic acid, Ac7c = 1-aminocycloheptane-1-carboxylic acid, Aib = alpha-aminoisobutyric acid, Dpg = alpha,alpha-di-n-propyl glycine, Deg = alpha,alpha-di-n-ethyl glycine) have been investigated. In crystals, helical conformations have been demonstrated by x-ray crystallography for the peptides, R-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe, (R = Boc and acetyl). Solution conformations of the five peptides have been studied by 1H-nmr. In the apolar solvent CDCl3, all five peptides favor helical conformations in which the NH groups of residues 3-7 are shielded from the solvent. Successive NiH<-->Ni + 1H nuclear Overhauser effects over the length of the sequence support a major population of continuous helical conformations. Solvent titration experiments in mixtures of CDCl3/DMSO provide evidence for solvent-dependent conformational transitions that are more pronounced for the Deg and Dpg peptides. Solvent-dependent chemical shift variations and temperature coefficients in DMSO suggest that the conformational distributions in the Deg/Dpg peptides are distinctly different from the Aib/Acnc peptides in a strongly solvating medium. Nuclear Overhauser effects provide additional evidence for the population of extended backbone conformations in the Dpg peptide, while a significant residual population of helical conformations is still detectable in the isomeric Ac7c peptide in DMSO.
The role of end groups in determining stereochemistry and packing in hydrophobic helical peptides has been investigated using an alpha-aminosobutyric acid (Aib) containing model nonapeptide sequence. In contrast to the Boc-analogue, Ac-(Aib-Val-Ala-Leu)2-Aib-OMe crystallizes with two independent molecules in a triclinic cell. The cell parameters are: space group P1, a = 10.100(2)A, b = 15.194(4)A, c = 19.948(5)A, alpha = 63.12(2) degrees, beta = 88.03(2) degrees, y = 88.16(2) degrees, Z = 2, R = 7.96% for 5140 data where magnitude of Fo > 3 rho(F). The two independent molecules alternate in infinite columns formed by head-to-tail hydrogen bonding. The helices in the two independent molecules are quite similar to each other but one molecule is rotated approximately 123 degrees about its helix axis with respect to the other. All the helical columns pack parallel to each other in the crystal. Replacement of the bulky Boc group does not lead to any major changes in conformation. Packing characteristics are also similar to those observed for similar helical peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.