Following our study on the incidence, morphology and kinematics of the ionized gas in earlytype galaxies, we now address the question of what is powering the observed nebular emission. To constrain the likely sources of gas excitation, we resort to a variety of ancillary data we draw from complementary information on the gas kinematics, stellar populations and galactic potential from the SAURON data, and use the SAURON-specific diagnostic diagram juxtaposing the [O III] λ5007/Hβ and [N I] λλ5197, 5200/Hβ line ratios. We find a tight correlation between the stellar surface brightness and the flux of the Hβ recombination line across our sample, which points to a diffuse and old stellar source as the main contributor of ionizing photons in early-type galaxies, with post-asymptotic giant branch (pAGB) stars being still the best candidate based on ionizing balance arguments. The role of AGN photoionization is confined to the central 2-3 arcsec of an handful of objects with radio or X-ray cores. OB-stars are the dominant source of photoionization in 10 per cent of the SAURON sample, whereas for another 10 per cent the intense and highly ionized emission is powered by the pAGB population associated to a recently formed stellar subcomponent. Fast shocks are not an important source of ionization for the diffuse nebular emission of early-type galaxies since the required shock velocities can hardly be attained in the potential of our sample galaxies. Finally, in the most massive and slowly or non-rotating galaxies in our sample, which can retain a massive X-ray halo, the finding of a spatial correlation between the hot and warm phases of the interstellar medium (ISM) suggests that the interaction with the hot ISM provides an additional source of ionization besides old ultraviolet-bright stars. This is also supported by a distinct pattern
We present observations of the CO(1‐0) emission in the central 750 pc (10 arcsec) of the counter‐rotating disc galaxy NGC 4550, obtained at the Institut de Radioastronomie Millimétrique (IRAM) Plateau de Bure Interferometer. Very little molecular gas is detected, only 1×107 M⊙, and its distribution is lopsided, with twice as much molecular gas observed at positive relative velocities than at negative relative velocities. The velocity gradient in the CO(1‐0) emission shows that the molecular gas rotates like the thicker of the two stellar discs, which is an unexpected alignment of rotations if the thinner disc was formed by a major gas accretion event. However, a simulation shows that the gas rotating like the thicker disc naturally results from the coplanar merger of two counter‐rotating disc galaxies, demonstrating the feasibility of this scenario for the formation of NGC 4550. We investigate various star formation tracers to determine whether the molecular gas in NGC 4550 is currently forming stars. Ultraviolet (UV) imaging data and optical absorption line strengths both suggest a recent star formation episode; the best‐fitting two‐population model to the UV‐optical colours yields a mass of young stars of 5.9×107 M⊙ with an age of 280 Myr. The best information on the current star formation rate is a far‐infrared‐based upper limit of only 0.02 M⊙ yr−1. We are thus witnessing NGC 4550 either in a dip within a bursty star formation period or during a more continuous low‐level star formation episode.
We present ground‐based MDM Observatory V‐band and Spitzer/InfraRed Array Camera 3.6‐m‐band photometric observations of the 72 representative galaxies of the SAURON survey. Galaxies in our sample probe the elliptical E, lenticular S0 and spiral Sa populations in the nearby Universe, both in field and cluster environments. We perform aperture photometry to derive homogeneous structural quantities. In combination with the SAURON stellar velocity dispersion measured within an effective radius (σe), this allows us to explore the location of our galaxies in the colour–magnitude, colour–σe, Kormendy, Faber–Jackson and Fundamental Plane scaling relations. We investigate the dependence of these relations on our recent kinematical classification of early‐type galaxies (i.e. slow/fast rotators) and the stellar populations. Slow rotator and fast rotator E/S0 galaxies do not populate distinct locations in the scaling relations, although slow rotators display a smaller intrinsic scatter. We find that Sa galaxies deviate from the colour–magnitude and colour–σe relations due to the presence of dust, while the E/S0 galaxies define tight relations. Surprisingly, extremely young objects do not display the bluest (V−[3.6]) colours in our sample, as is usually the case in optical colours. This can be understood in the context of the large contribution of thermally pulsing asymptotic giant branch stars to the infrared, even for young populations, resulting in a very tight (V−[3.6])–σe relation that in turn allows us to define a strong correlation between metallicity and σe. Many Sa galaxies appear to follow the Fundamental Plane defined by E/S0 galaxies. Galaxies that appear offset from the relations correspond mostly to objects with extremely young populations, with signs of ongoing, extended star formation. We correct for this effect in the Fundamental Plane, by replacing luminosity with stellar mass using an estimate of the stellar mass‐to‐light ratio, so that all galaxies are part of a tight, single relation. The new estimated coefficients are consistent in both photometric bands and suggest that differences in stellar populations account for about half of the observed tilt with respect to the virial prediction. After these corrections, the slow rotator family shows almost no intrinsic scatter around the best‐fitting Fundamental Plane. The use of a velocity dispersion within a small aperture (e.g. Re/8) in the Fundamental Plane results in an increase of around 15 per cent in the intrinsic scatter and an average 10 per cent decrease in the tilt away from the virial relation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.