This paper develops a regression limit theory for nonstationary panel data with large Ž . Ž . numbers of cross section n and time series T observations. The limit theory allows for both sequential limits, wherein T ª ϱ followed by n ª ϱ, and joint limits where T, n ª ϱ simultaneously; and the relationship between these multidimensional limits is explored. The panel structures considered allow for no time series cointegration, heterogeneous cointegration, homogeneous cointegration, and near-homogeneous cointegration. The paper explores the existence of long-run average relations between integrated panel vectors when there is no individual time series cointegration and when there is heterogeneous cointegration. These relations are parameterized in terms of the matrix regression coefficient of the long-run average covariance matrix. In the case of homogeneous and near homogeneous cointegrating panels, a panel fully modified regression estimator is developed and studied. The limit theory enables us to test hypotheses about the long run average parameters both within and between subgroups of the full population.
This paper studies testing for a unit root for large n and T panels in which the cross-sectional units are correlated. To model this cross-sectional correlation, we assume that the data is generated by an unknown number of unobservable common factors. We propose unit root tests in this environment and derive their (Gaussian) asymptotic distribution under the null hypothesis of a unit root and local alternatives. We show that these tests have significant asympotitic power when the model has no incidental trends. However, when there are incidental trends in the model and it is necessary to remove heterogeneous deterministic components, we show that these tests have no power against the same local alternatives. Through Monte Carlo simulations, we provide evidence on the finite sample properties of these new tests.
This paper studies testing for a unit root for large n and T panels in which the cross-sectional units are correlated. To model this cross-sectional correlation, we assume that the data is generated by an unknown number of unobservable common factors. We propose unit root tests in this environment and derive their (Gaussian) asymptotic distribution under the null hypothesis of a unit root and local alternatives. We show that these tests have significant asympotitic power when the model has no incidental trends. However, when there are incidental trends in the model and it is necessary to remove heterogeneous deterministic components, we show that these tests have no power against the same local alternatives. Through Monte Carlo simulations, we provide evidence on the finite sample properties of these new tests.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in EconStor may AbstractIn this paper we study the least squares (LS) estimator in a linear panel regression model with unknown number of factors appearing as interactive fixed effects. Assuming that the number of factors used in estimation is larger than the true number of factors in the data we establish the limiting distribution of the LS estimator for the regression coefficients, as the number of time periods and the number of crosssectional units jointly go to infinity. The main result of the paper is that under certain assumptions the limiting distribution of the LS estimator is independent of the number of factors used in the estimation, as long as this number is not underestimated. The important practical implication of this result is that for inference on the regression coefficients one does not necessarily need to estimate the number of interactive fixed effects consistently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.