Saltwater intrusion in coastal aquifer was investigated using a laboratory model. Salt-wedge profiles were reproduced in a porous media tank 140 cm long, 70 cm high, and 10 cm wide. The experiments were performed with various conditions of porous media hydraulic conductivity, salinity, and ground surface slope to assess relationships on salt wedge location and inclination. Salt-wedge profiles induced by saltwater intrusion were observed in porous media equilibrium state, and compared with previously derived formulas of the Glover (1959), Henry (1959) and Strack (1976). It was found that salt-wedge shape and formations were affected by the water level ratio ( ) due to high hydraulic conductivity, saltwater salinity and ground surface slope. High of porous media having high hydraulic conductivity shifted the saltwater interface toward the saltwater reservoir. Increasing surface slope of the porous media caused the salt-wedge profile inclination to decrease. Saltwater salinity also contributed to the location of saltwater interface, yet the impact was not more significant than hydraulic conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.