The present work experimentally studied two novel solar dryers’ designs, novel indirect solar dryer (NISD) and novel mixed indirect solar dryer (NMISD). The purpose behind this work is to compare the thermal performance of the proposed dryers with that of a traditional indirect solar dryer (TISD). The testing method involved building and thermally testing the three dryers. The NISD is a novel drying chamber with three absorbed surfaces. The NMISD consisted of a flat plate solar collector and NISD. The air temperature at the drying chamber entrance increased by 60% and 68% for the TISD and NMISD, respectively. In the lower space of the drying chamber, the air temperature was decreased by 35% while increased by 39% for the NISD and NMISD, respectively, compared to the TISD. The air temperature in the upper space of the drying chamber increased by 14% and 49% for the NISD and NMISD, respectively, compared to the TISD. The temperature variations through the drying chamber were -26%, 33%, and 3% in the TISD, NISD, and NMISD, respectively. The thermal efficiencies of the NISD and NMISD were 9% and 55%, respectively, higher than the TISD’s.
Latent heat storage has shown a great potential in many engineering applications. The utilization of latent heat storage has been extended from small scales to large scales of thermal engineering applications. In food industry, latent heat has been applied in food storage. Another potential application of latent heat storage is to maintain hot beverages at a reasonable drinking temperature for longer periods. In the present work, a numerical calculation was performed to investigate the impact of utilizing encapsulated phase change material PCM on the temperature of hot beverage. The PCM was encapsulated in rings inside the cup. The results showed that the encapsulated PCM reduced the coffee temperature to an acceptable temperature in shorter time. In addition, the PCM maintained the hot beverage temperature at an acceptable drinking temperature for rational time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.