The safe disposal of an enormous amount of waste glass (WG) in several countries has become a severe environmental issue. In contrast, concrete production consumes a large amount of natural resources and contributes to environmental greenhouse gas emissions. It is widely known that many kinds of waste may be utilized rather than raw materials in the field of construction materials. However, for the wide use of waste in building construction, it is necessary to ensure that the characteristics of the resulting building materials are appropriate. Recycled glass waste is one of the most attractive waste materials that can be used to create sustainable concrete compounds. Therefore, researchers focus on the production of concrete and cement mortar by utilizing waste glass as an aggregate or as a pozzolanic material. In this article, the literature discussing the use of recycled glass waste in concrete as a partial or complete replacement for aggregates has been reviewed by focusing on the effect of recycled glass waste on the fresh and mechanical properties of concrete.
Geopolymer (GP) concrete is a novel construction material that can be used in place of traditional Portland cement (PC) concrete to reduce greenhouse gas emissions and effectively manage industrial waste. Fly ash (FA) has long been utilized as a key constituent in GPs, and GP technology provides an environmentally benign alternative to FA utilization. As a result, a thorough examination of GP concrete manufactured using FA as a precursor (FA-GP concrete) and employed as a replacement for conventional concrete has become crucial. According to the findings of current investigations, FA-GP concrete has equal or superior mechanical and physical characteristics compared to PC concrete. This article reviews the clean production, mix design, compressive strength (CS), and microstructure (Ms) analyses of the FA-GP concrete to collect and publish the most recent information and data on FA-GP concrete. In addition, this paper shall attempt to develop a comprehensive database based on the previous research study that expounds on the impact of substantial aspects such as physio-chemical characteristics of precursors, mixes, curing, additives, and chemical activation on the CS of FA-GP concrete. The purpose of this work is to give viewers a greater knowledge of the consequences and uses of using FA as a precursor to making effective GP concrete.
The Sultanate of Oman has experienced rapid development over the last thirty years and has constructed environmentally friendly and sustainable infrastructure while it continues to find economical alternative resources to achieve the goals of the Oman 2040 vision. The primary concerns are preserving natural resources and reducing the impact of carbon dioxide (CO₂) emissions on the environment. This review aims to encourage the sustainable use of reclaimed asphalt pavement (RAP) materials in pavement construction and focuses primarily on employing RAP materials in new pavement projects. Currently, new construction projects utilise a significant percentage of demolished asphalt pavement to save costs and natural resources. The key issue that arises when mixing RAP into new asphalt mixtures is the effects on the mixtures’ resistance to permanent disfigurements, such as fatigue cracks, that influence asphalt mixture performance. Numerous studies have assessed the impact of using RAP in asphalt mixtures and found that RAP increases the stiffness of asphalt mixtures, and thus improves rutting resistance at high temperatures. Nevertheless, the findings for thermal and fatigue cracking were found to be contradictory. This review will address the primary concerns regarding the use of RAP in asphalt pavements, and aims to encourage highway agencies and academic researchers in the Gulf countries to develop frameworks for the practical usage of RAP in the construction of sustainable pavement systems.
This study focused on identifying the most appropriate structural system for multi-story buildings and analyzing its response to lateral loads. The study analyzed and compared the different structural systems to determine the most suitable option. The study aims to utilize three lateral framing systems (moment, braced, and diagrid) in order to investigate which system needs the least amount of steel to meet the design requirements. Thus, in order to determine the estimated steel savings of this system as compared to the moment and braced frames, the four-story and eight-story buildings that are 96′ × 96′ in the plane and utilize moment frames, braced frame, and diagrid framing structural systems are presented. Based on the American Society of Civil Engineers (ASCE) 7–10, load combinations are considered for the designs, and the RAM structural analysis is used for the modeling and analysis of the structural systems. The findings of this study’s illustrations were the optimum for the analysis of wind of 176 kips and seismic loads of 122 kips, the building’s lateral displacements, which were the lowest at 0.045 inches, the story drift, the story stiffness, and the story shear for each structural system. In addition, the diagrid system also had the least amount of shear for all the stories, suggesting that it is better able to manage the lateral forces. These results indicate that the diagrid system is a more efficient structural system and can be recommended for use in multi-story buildings.
The exposure of concrete to elevated temperatures is known to cause diverse severe damages in concrete composites. Hence, measures to improve the performance of concrete during exposure to fire are continually proposed. The present study investigated the postfire residual strength and morphology of concrete incorporating natural rubber latex exposed to elevated temperature. Four different concrete mixes were considered for the investigation, namely, a control sample made without natural rubber latex, the second sample containing 1% natural rubber latex, the third sample containing 1.5% natural rubber latex, and the fourth sample containing 3% of natural rubber latex. The concrete samples (150 mm cubes and 100 × 200 mm cylinders) were exposed to varying temperatures 300°C, 800°C, and 1000°C, after the curing process. Nondestructive tests using Schmidt rebound hammer and ultrasonic pulse tester were carried out on samples. The compressive strength and split-tensile strength of concrete cubes and cylinders, respectively, were determined. Micrographs and elemental distribution in the sample were studied using the scanning electron microscopy (SEM-EDX) apparatus. It could be seen from the results that the concrete strength properties reduced as the exposure temperature increased. The results also showed that NRL could be sparingly utilized as a concrete admixture, at 1% content. The performance of concrete was not stable at over 300°C when NRL addition was above 1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.