Obesity, diabetes, and inflammation increase the risk of breast cancer, the most common malignancy in women. One of the mainstays of breast cancer treatment and improving outcomes is early detection through imaging-based screening. There may be a role for individualized imaging strategies for patients with certain co-morbidities. Herein, we review the literature regarding the accuracy of conventional imaging modalities in obese and diabetic women, the potential role of anti-inflammatory agents to improve detection, and the novel molecular imaging techniques that may have a role for breast cancer screening in these patients. We demonstrate that with conventional imaging modalities, increased sensitivity often comes with a loss of specificity, resulting in unnecessary biopsies and overtreatment. Obese women have body size limitations that impair image quality, and diabetes increases the risk for dense breast tis-sue. Increased density is known to obscure the diagnosis of cancer on routine screening mammography. Novel molecu-lar imaging agents with targets such as estrogen receptor, human epidermal growth factor receptor 2 (HER2), pyrimi-dine analogues, and ligand-targeted receptor probes, among others, have potential to reduce false positive results. They can also improve detection rates with increased resolution and inform therapeutic decision making. These emerg-ing imaging techniques promise to improve breast cancer diagnosis in obese patients with diabetes who have dense breasts, but more work is needed to validate their clinical application.
Image-guided nanotheranostics have the potential to represent a new paradigm in the treatment of cancer. Recent developments in modern imaging and nanoparticle design offer an answer to many of the issues associated with conventional chemotherapy, including their indiscriminate side effects and susceptibility to drug resistance. Imaging is one of the tools best poised to enable tailoring of cancer therapies. The field of image-guided nanotheranostics has the potential to harness the precision of modern imaging techniques and use this to direct, dictate, and follow site-specific drug delivery, all of which can be used to further tailor cancer therapies on both the individual and population level. The use of image-guided drug delivery has exploded in preclinical and clinical trials although the clinical translation is incipient. This review will focus on traditional mechanisms of targeted drug delivery in cancer, including the use of molecular targeting, as well as the foundations of designing nanotheranostics, with a focus on current clinical applications of nanotheranostics in cancer. A variety of specially engineered and targeted drug carriers, along with strategies of labeling nanoparticles to endow detectability in different imaging modalities will be reviewed. It will also introduce newer concepts of image-guided drug delivery, which may circumvent many of the issues seen with other techniques. Finally, we will review the current barriers to clinical translation of image-guided nanotheranostics and how these may be overcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.