Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to respiratory illness and multi-organ failure in critically ill patients. Although the virus-induced lung damage and inflammatory cytokine storm are believed to be directly associated with coronavirus disease 2019 (COVID-19) clinical manifestations, the underlying mechanisms of virus-triggered inflammatory responses are currently unknown. Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells. The processed inflammatory cytokines are released through the virus-induced necroptosis pathway. Virus-induced apoptosis, necroptosis, and inflammation activation were also observed in the lung sections of SARS-CoV-2-infected HFH4-hACE2 transgenic mouse model, a valid model for studying SARS-CoV-2 pathogenesis. Furthermore, analysis of the postmortem lung sections of fatal COVID-19 patients revealed not only apoptosis and necroptosis but also massive inflammatory cell infiltration, necrotic cell debris, and pulmonary interstitial fibrosis, typical of immune pathogenesis in the lung. The SARS-CoV-2 infection triggered a dual mode of cell death pathways and caspase-8-dependent inflammatory responses may lead to the lung damage in the COVID-19 patients. These discoveries might assist the development of therapeutic strategies to treat COVID-19.
Summary Background The frequent recurrence of early-stage non-small-cell lung cancer (NSCLC) is generally attributable to metastatic disease undetected at complete resection. Management of such patients depends on prognostic staging to identify the individuals most likely to have occult disease. We aimed to develop and validate a practical, reliable assay that improves risk stratification compared with conventional staging. Methods A 14-gene expression assay that uses quantitative PCR, runs on formalin-fixed paraffin-embedded tissue samples, and differentiates patients with heterogeneous statistical prognoses was developed in a cohort of 361 patients with non-squamous NSCLC resected at the University of California, San Francisco. The assay was then independently validated by the Kaiser Permanente Division of Research in a masked cohort of 433 patients with stage I non-squamous NSCLC resected at Kaiser Permanente Northern California hospitals, and on a cohort of 1006 patients with stage I–III non-squamous NSCLC resected in several leading Chinese cancer centres that are part of the China Clinical Trials Consortium (CCTC). Findings Kaplan-Meier analysis of the Kaiser validation cohort showed 5 year overall survival of 71·4% (95% CI 60·5–80·0) in low-risk, 58·3% (48·9–66·6) in intermediate-risk, and 49·2% (42·2–55·8) in high-risk patients (ptrend=0·0003). Similar analysis of the CCTC cohort indicated 5 year overall survivals of 74·1% (66·0–80·6) in low-risk, 57·4% (48·3–65·5) in intermediate-risk, and 44·6% (40·2–48·9) in high-risk patients (ptrend<0·0001). Multivariate analysis in both cohorts indicated that no standard clinical risk factors could account for, or provide, the prognostic information derived from tumour gene expression. The assay improved prognostic accuracy beyond National Comprehensive Cancer Network criteria for stage I high-risk tumours (p<0·0001), and differentiated low-risk, intermediate-risk, and high-risk patients within all disease stages. Interpretation Our practical, quantitative-PCR-based assay reliably identified patients with early-stage non-squamous NSCLC at high risk for mortality after surgical resection. Funding UCSF Thoracic Oncology Laboratory and Pinpoint Genomics.
Understanding the role played by solid surfaces in ice nucleation is a significant step toward designing anti-icing surfaces. However, the uncontrollable impurities in water and surface heterogeneities remain a great challenge for elucidating the effects of surfaces on ice nucleation. Via a designed process of evaporation, condensation, and subsequent ice formation in a closed cell, we investigate the ice nucleation of ensembles of condensed water microdroplets on flat, solid surfaces with completely different wettabilities. The water microdroplets formed on flat, solid surfaces by an evaporation and condensation process exclude the uncontrollable impurities in water, and the effects of surface heterogeneities can be minimized through studying the freezing of ensembles of separate and independent water microdroplets. It is found that the normalized surface ice nucleation rate on a hydrophilic surface is about 1 order of magnitude lower than that on a hydrophobic surface. This is ascribed to the difference in the viscosity of interfacial water and the surface roughness.
An inverse opal with both superoleophilic (oil contact angle (CA), 5.1° ± 1.2°) and superhydrophobic (water CA, 153.8° ± 1.2°) properties is fabricated using a phenolic resin (PR) as precursor and poly(styrene‐methyl methacrylate‐acrylic acid) (poly(St‐MMA‐AA)) colloidal crystals as templates. The stopband of the inverse opal can shift reversibly upon sorption of oils, whereby the peak position is a linear function of the refractive index of the adsorbed oil, e.g., a variation in refractive index of 0.02 will result in a stopband shift of 26 nm. Therefore, the inverse opals show a high sensitivity and selectivity for different petroleum oils. Moreover, as‐prepared PR inverse opals show excellent oil‐sensing stability in cyclic sorption experiments, which suggests a promising and economical alternative to traditional oil‐sensing materials, and will provide a new approach to in situ petroleum monitoring and detection.
Retarding and preventing ice/frost formation has an increasing importance because of the significant energy and safety concerns nowadays. In this paper, super-hydrophobic surfaces with ZnO nanorod arrays were fabricated. These surfaces were super-hydrophobic not only to sessile macro-droplets at room temperature but also to condensed micro-droplets at temperatures below the freezing point. The effects of these ZnO surfaces towards ice/frost formation were investigated. The results show that the time of condensed droplets maintaining the liquid state (t) increases with the decrease of the growth time (t ZnO ) of ZnO nanorods which determines the surface wettability, clearly indicating the retardation of ice/frost formation. An explanation is proposed based on classic nucleation theory and the heat transfer between condensed droplets and super-hydrophobic surfaces. These results make clear that superhydrophobicity to condensed micro-droplets at temperatures below the freezing point is desirable for effectively retarding ice/frost formation. In addition, they are significant for understanding the effect of superhydrophobicity at surface temperatures lower than the equilibrium freezing point on retarding and preventing ice/frost formation and will be beneficial for the design of effective anti-ice/ frost materials.
Many candidate genes have been studied for asthma, but replication has varied. Novel candidate genes have been identified for various complex diseases using genome-wide association studies (GWASs). We conducted a GWAS in 492 Mexican children with asthma, predominantly atopic by skin prick test, and their parents using the Illumina HumanHap 550 K BeadChip to identify novel genetic variation for childhood asthma. The 520,767 autosomal single nucleotide polymorphisms (SNPs) passing quality control were tested for association with childhood asthma using log-linear regression with a log-additive risk model. Eleven of the most significantly associated GWAS SNPs were tested for replication in an independent study of 177 Mexican case–parent trios with childhood-onset asthma and atopy using log-linear analysis. The chromosome 9q21.31 SNP rs2378383 (p = 7.10×10−6 in the GWAS), located upstream of transducin-like enhancer of split 4 (TLE4), gave a p-value of 0.03 and the same direction and magnitude of association in the replication study (combined p = 6.79×10−7). Ancestry analysis on chromosome 9q supported an inverse association between the rs2378383 minor allele (G) and childhood asthma. This work identifies chromosome 9q21.31 as a novel susceptibility locus for childhood asthma in Mexicans. Further, analysis of genome-wide expression data in 51 human tissues from the Novartis Research Foundation showed that median GWAS significance levels for SNPs in genes expressed in the lung differed most significantly from genes not expressed in the lung when compared to 50 other tissues, supporting the biological plausibility of our overall GWAS findings and the multigenic etiology of childhood asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.