The Biopharmaceutics Classification System (BCS) is a scientific framework that provides a basis for predicting the oral absorption of drugs. These concepts have been extended in the Biopharmaceutics Drug Disposition Classification System (BDDCS) to explain the potential mechanism of drug clearance and understand the effects of uptake and efflux transporters on absorption, distribution, metabolism, and elimination. The objective of present work is to establish criteria for provisional biopharmaceutics classification using pH-dependent passive permeability and aqueous solubility data generated from high throughput screening methodologies in drug discovery settings. The apparent permeability across monolayers of clonal cell line of Madin-Darby canine kidney cells, selected for low endogenous efflux transporter expression, was measured for a set of 105 drugs, with known BCS and BDDCS class. The permeability at apical pH 6.5 for acidic drugs and at pH 7.4 for nonacidic drugs showed a good correlation with the fraction absorbed in human (Fa). Receiver operating characteristic (ROC) curve analysis was utilized to define the permeability class boundary. At permeability ≥ 5 × 10(-6) cm/s, the accuracy of predicting Fa of ≥ 0.90 was 87%. Also, this cutoff showed more than 80% sensitivity and specificity in predicting the literature permeability classes (BCS), and the metabolism classes (BDDCS). The equilibrium solubility of a subset of 49 drugs was measured in pH 1.2 medium, pH 6.5 phosphate buffer, and in FaSSIF medium (pH 6.5). Although dose was not considered, good concordance of the measured solubility with BCS and BDDCS solubility class was achieved, when solubility at pH 1.2 was used for acidic compounds and FaSSIF solubility was used for basic, neutral, and zwitterionic compounds. Using a cutoff of 200 μg/mL, the data set suggested a 93% sensitivity and 86% specificity in predicting both the BCS and BDDCS solubility classes. In conclusion, this study identified pH-dependent permeability and solubility criteria that can be used to assign provisional biopharmaceutics class at early stage of the drug discovery process. Additionally, such a classification system will enable discovery scientists to assess the potential limiting factors to oral absorption, as well as help predict the drug disposition mechanisms and potential drug-drug interactions.
Hepatic uptake transporters [solute carriers (SLCs)], including organic anion transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1, sodium-dependent taurocholate cotransporting polypeptide (NTCP), and organic anion (OAT2) and organic cation (OCT1) transporters, play a key role in determining the systemic and liver exposure of chemically diverse drugs. Here, we established a phenotyping approach to quantify the contribution of the six SLCs, and passive diffusion, to the overall uptake using plated human hepatocytes (PHHs). First, selective inhibitor conditions were identified by screening about 20 inhibitors across the six SLCs using single-transfected human embryonic kidney 293 cells. Data implied rifamycin SV (20 mM) inhibits three OATPs, while rifampicin (5 mM) inhibits OATP1B1/1B3 only. Further, hepatitis B virus myristoylated-preS1 peptide (0.1 mM), quinidine (100 mM), and ketoprofen (100-300 mM) are relatively selective against NTCP, OCT1, and OAT2, respectively. Second, using these inhibitory conditions, the fraction transported (f t) by the individual SLCs was characterized for 20 substrates with PHH. Generally, extended clearance classification system class 1A/3A (e.g., warfarin) and 1B/3B compounds (e.g., statins) showed predominant OAT2 and OATP1B1/1B3 contribution, respectively. OCT1mediated uptake was prominent for class 2/4 compounds (e.g., metformin). Third, in vitro f t values were corrected using quantitative proteomics data to obtain "scaled f t ." Fourth, in vitro-in vivo extrapolation of the scaled OATP1B1/1B3 f t was assessed, leveraging statin clinical drug-drug interaction data with rifampicin as the perpetrator. Finally, we outlined a novel stepwise strategy to implement phenotypic characterization of SLC-mediated hepatic uptake for new molecular entities and drugs in a drug discovery and development setting.
On May 15, 2013, the U.S. Food and Drug Administration (FDA) approved radium Ra 223 dichloride (Ra-223; Xofigo injection; Bayer HealthCare Pharmaceuticals Inc.) for the treatment of patients with castrationresistant prostate cancer (CRPC), symptomatic bone metastases, and no known visceral metastatic disease. The FDA review was based on clinical trial BC1-06, which randomly allocated patients (2:1) to either Ra-223 plus best standard of care (BSoC) or placebo plus BSoC. The primary endpoint was overall survival (OS) with a key secondary endpoint of time to first symptomatic skeletal event (SSE). A statistically significant improvement in OS was demonstrated [HR, 0.70; 95% confidence interval, 0.55-0.88, P ¼ 0.0019]. At the prespecified interim analysis, the median OS durations were 14.0 and 11.2 months in the Ra-223 and placebo arms, respectively. The improvement in OS was supported by a delay in time to first SSE favoring the Ra-223 arm. The most common (>10%) adverse reactions in patients receiving Ra-223 were nausea, diarrhea, vomiting, and peripheral edema. The most common (>10%) hematologic laboratory abnormalities were anemia, lymphocytopenia, leukopenia, thrombocytopenia, and neutropenia. Ra-223 is the first a-emitting radiotherapeutic and the first radiopharmaceutical to demonstrate an OS advantage in metastatic prostate cancer.
We describe a mass spectrometry (MS) analytical platform resulting from the novel integration of acoustic droplet ejection (ADE) technology, an open-port interface (OPI), and electrospray ionization (ESI) MS that creates a transformative system enabling high-speed sampling and label-free analysis. The ADE technology delivers nanoliter droplets in a touchless 20 manner with high speed, precision and accuracy; subsequent sample dilution within the OPI, in concert with the capabilities of modern ESI-MS, eliminates the laborious sample preparation and method development required in current approaches. This platform is applied to a variety of experiments, including high-throughput (HT) pharmacology screening, label-free in situ enzyme kinetics, in vitro and in vivo adsorption, distribution, metabolism, elimination, pharmacokinetic 25 (PK) and biomarker analysis, and HT parallel medicinal chemistry.One Sentence Summary: ADE-OPI-MS is a transformational analytical platform that increases mass spectrometry utility via sub-second speed and non-contact sampling.Mass is a fundamental molecular characteristic, and the advent of mass spectrometry (MS) to 30
Transporter-mediated hepatic uptake is proven to be the rate-determining step in the systemic clearance of several drugs. Therefore, accurate measurement of active and passive uptake clearances in vitro is critical to facilitate pharmacokinetics and drug-drug interaction predictions. Here, we evaluated the plated human hepatocytes (PHH) and studied the effect of incubation temperature and inhibitor concentration on uptake measurements, in order to reliably estimate hepatic uptake components. Uptake rates measured using PHH, at 37°C without and with rifamycin SV, were comparable with those obtained from suspension hepatocytes and sandwich-cultured hepatocytes for a set of 10-13 compounds. Apparent permeability across monolayers of low-efflux Madin-Darby canine kidney cells was measured at 4, 10, and 37°C. Of the 23 compounds evaluated, 13 compounds showed >2-fold reduction in passive permeability at 4°C compared to 37°C, inferring that low-temperature incubations may underestimate passive uptake. Inhibition studies using transporter-transfected cells suggested that ∼20 μM rifamycin SV completely inhibited organic anion-transporting polypeptides (OATPs), while no significant inhibition was noted for other hepatic uptake transporters. On the basis of inhibition profiles, the contribution of active versus passive and OATP versus non-OATP transport to the PHH uptake was discerned for various endogenous substrates and statins. With the exception of fluvastatin, the statins studied were predominantly transported by OATPs in PHH and the non-OATP transporters, such as Na-taurocholate co-transporting polypeptide, played a minimal role. In conclusion, PHH is useful for uptake measurements, and rifamycin SV employed at different concentrations can reliably estimate active and passive uptake and characterize OATP-dependent active uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.