An outbreak of betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with SARS-CoV-2 infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR-Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts.
We validated our method using contrived reference samples and clinical samples from patients in the United States, including 36 patients with COVID-19 infection and 42 patients with other viral respiratory infections. Our CRISPR-based DETECTR assay provides a visual and faster alternative to the US Centers for Disease Control and Prevention SARS-CoV-2real-time RT-PCR assay, with 95% positive predictive agreement and 100% negative predictive agreement.
Since its identification in April 2009 an A(H1N1) virus containing a unique combination of gene segments from both North American and Eurasian swine lineages has continued to circulate in humans. The 2009 A(H1N1) virus is distantly related to its nearest relatives, indicating that its gene segments have been circulating undetected for an extended period. Low genetic diversity among the viruses suggests the introduction into humans was a single event or multiple events of similar viruses. Molecular markers predicted for adaptation to humans are not currently present in 2009 A(H1N1) viruses, suggesting previously unrecognized molecular determinants could be responsible for the transmission among humans. Antigenically the viruses are homogeneous and similar to North American swine A(H1N1) viruses but distinct from seasonal human A(H1N1).
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has spread globally, with >52,000 cases in California as of May 4, 2020. Here we investigate the genomic epidemiology of SARS-CoV-2 in Northern California from late January to mid-March 2020, using samples from 36 patients spanning 9 counties and the Grand Princess cruise ship. Phylogenetic analyses revealed the cryptic introduction of at least 7 different SARS-CoV-2 lineages into California, including epidemic WA1 strains associated with Washington State, with lack of a predominant lineage and limited transmission between communities. Lineages associated with outbreak clusters in 2 counties were defined by a single base substitution in the viral genome. These findings support contact tracing, social distancing, and travel restrictions to contain SARS-CoV-2 spread in California and other states.
NAI treatment of critically ill pH1N1 patients improves survival. While earlier treatment conveyed the most benefit, patients who started treatment up to 5 days after symptom onset also were more likely to survive. Further research is needed about whether starting NAI treatment >5 days after symptom onset may also convey benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.