Biological nervous systems and the mechanisms underlying their operation exhibit astonishing complexity. Computational models of these systems have been correspondingly complex. As these models become ever more sophisticated, they become increasingly di¤cult to de¢ne, comprehend, manage and communicate. Consequently, for scienti¢c understanding of biological nervous systems to progress, it is crucial for modellers to have software tools that support discussion, development and exchange of computational models. We describe methodologies that focus on these tasks, improving the ability of neuroscientists to engage in the modelling process. We report our ¢ndings on the requirements for these tools and discuss the use of declarative forms of model descriptionöequivalent to object-oriented classes and database schemaöwhich we call templates. We introduce NeuroML, a mark-up language for the neurosciences which is de¢ned syntactically using templates, and its speci¢c component intended as a common format for communication between modelling-related tools. Finally, we propose a template hierarchy for this modelling component of NeuroML, su¤cient for describing models ranging in structural levels from neuron cell membranes to neural networks. These templates support both a framework for user-level interaction with models, and a high-performance framework for e¤cient simulation of the models.
Neuroscience increasingly uses computational models to assist in the exploration and interpretation of complex phenomena. As a result, considerable effort is invested in the development of software tools and technologies for numerical simulations and for the creation and publication of models. The diversity of related tools leads to the duplication of effort and hinders model reuse. Development practices and technologies that support interoperability between software systems therefore play an important role in making the modeling process more efficient and in ensuring that published models can be reliably and easily reused. Various forms of interoperability are possible including the development of portable model description standards, the adoption of common simulation languages or the use of standardized middleware. Each of these approaches finds applications within the broad range of current modeling activity. However more effort is required in many areas to enable new scientific questions to be addressed. Here we present the conclusions of the "Neuro-IT Interoperability of Simulators" workshop, held at the 11th computational neuroscience meeting in e-mail: erik@tnb.ua.ac.be. 19-20 2006; http://www.cnsorg.org). We assess the current state of interoperability of neural simulation software and explore the future directions that will enable the field to advance. NIH Public Access
The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be ‘glued’ together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.