Food allergy has become a growing health concern that may impair life quality and even cause life-threatening outcomes. Accidental and continuous exposure to allergenic bioaerosols has a substantially negative impact on the respiratory health of patients. Traditional analytical methodologies for food allergens are restricted by strong reliance on bulk instrumentation and skilled personnel, particularly in low-resource settings. In this study, a fluorescent sensor array based on the enzyme-linked immunosorbent assay performed on a herringbone-shaped microfluidic chip (ELISA-HB-chip) was designed for dynamically sensitive and multiplexed quantification of foodborne allergens in aerosols that originated from liquid food extracts. Due to the high surface area of aerosol particles and sufficient mixing of immunological reagents using a herringbone micromixer, the detection sensitivity was improved by over an order of magnitude compared to traditional allergen detection in the aqueous phase. Through fluorescence imaging of multiple regions on the ELISA-HB-chip, four important foodborne allergens, namely, ovalbumin, ovomucoid, lysozyme, and tropomyosin, could be simultaneously monitored without any cross-reactivity, and the limits of detection for these allergenic species were determined to be 7.8, 1.2, 4.2, and 0.31 ng/mL, respectively. Combining with a 3D printed and portable fluorescence microscope, this platform exhibited an excellent field-deployable capacity for quick and accurate determination of allergens in the aerosol state from spiked buffer solutions, thus displaying the practicality for food safety screening at cooking or food processing sites where patients are potentially under exposure to allergenic bioaerosols that escaped from food matrices or extracts.
We investigated the composition effect on spin Seebeck coefficient in YIG/Pt100−XRuX, YIG/Pt100−XCuX, and YIG/Pt100−X(Cu0.5Ru0.5)X systems. In all systems the composition of around 50 (at%) showed the maximum spin Seebeck coefficient, which is considered as the result from the extrinsic spin Hall effect improvement since the resistivity was also increased with doping Ru and Cu into Pt host. In terms of the spin Seebeck coefficient dependence on doped element, YIG/Pt100−XCuX was the largest, followed in order by YIG/Pt100−X(Cu0.5Ru0.5)X, and YIG/Pt100−XRuX, although both of Cu and Ru have equally small spin Hall angle in the single state. The X-ray diffraction analysis showed that Cu doping most widely decreased the unit cell size of alloy, and consequently increased the resistivity. It is considered as a reason of improvement of the extrinsic spin Hall angle and the spin Seebeck voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.