Species turnover is fundamental for understanding the mechanisms that influence large-scale species richness patterns. However, few studies have described and interpreted large-scale spatial variation in plant species turnover, and the causes of this variation remain elusive. In addition, the determinants of species turnover depend on the dispersal ability of growth forms. In this study, we explored the large-scale patterns of woody species turnover across the latitude gradient based on eight large stem-mapping plots (covering 184 ha forest) in East Asia. The patterns of woody species turnover increased significantly with increasing latitude differences in East Asia. For overall woody species, environment explained 36.30, 37.20, and 48.48% of the total variance in Jaccard’s (βj), Sorenson’s, (βs), and Simpson’s dissimilarity (βsim). Spatial factors explained 47.92, 48.39, and 41.38% of the total variance in βj, βs, and βsim, respectively. The effects of pure spatial and spatially structured environments were stronger than pure environmental effects for overall woody species. Our results support the hypothesis that the effect of neutral processes on woody species turnover is more important than the effect of the environment. Neutral processes explained more variation for turnover of tree species, and environmental factors explained more variation for the turnover of shrub species on a large scale. Therefore, trees and shrubs should be subjected to different protection strategies in future biodiversity conservation efforts.
Congeneric species often have similar ecological characteristics and use similar resources. These similarities may make it easier for them to co‐occur in a similar habitat but may also lead to strong competitions that limit their coexistence. Hence, how do similarities in congeneric species affect their coexistence exactly? This study mainly used spatial point pattern analysis in two 1 hm2 plots in the Baotianman National Nature Reserve, Henan, China, to compare the similarities in spatial distributions and interspecific associations of Quercus species. Results revealed that Quercus species were all aggregated under the complete spatial randomness null model, and aggregations were weaker under the heterogeneous Poisson process null model in each plot. The interspecific associations of Quercus species to non‐Quercus species were very similar in Plot 1. However, they can be either positive or negative in different plots between the co‐occurring Quercus species. The spatial distributions of congeneric species, interspecific associations with non‐Quercus species, neighborhood richness around species, and species diversity were all different between the two plots. We found that congeneric species did have some similarities, and the closely related congeneric species can positive or negative associate with each other in different plots. The co‐occurring congeneric species may have different survival strategies in different habitats. On the one hand, competition among congenerics may lead to differentiation in resource utilization. On the other hand, their similar interspecific associations can strengthen their competitive ability and promote local exclusion to noncongeneric species to obtain more living space. Our results provide new knowledge for us to better understand the coexistence mechanisms of species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.