The emergence and wide spread of multi-drug resistant Staphylococcus aureus (S. aureus) requires the development of new therapeutic agents with alternative modes of action. Anti-virulence strategies are hoped to meet that need. Sortase A (SrtA) has attracted great interest as a potential drug target to treat infections caused by S. aureus, as many of the surface proteins displayed by SrtA function as virulence factors by mediating bacterial adhesion to specific organ tissues, invasion of host cells, and evasion of the host-immune responses. It has been suggested that inhibitors of SrtA might be promising candidates for the treatment and/or prevention of S. aureus infections. In this study, we report that chlorogenic acid (CHA), a natural compound that lacks significant anti-S. aureus activity, inhibit the activity of SrtA in vitro (IC50 = 33.86 ± 5.55 μg/ml) and the binding of S. aureus to fibrinogen (Fg). Using molecular dynamics simulations and mutagenesis assays, we further demonstrate that CHA binds to the binding sites of C184 and G192 in the SrtA. In vivo studies demonstrated that CHA prevent mice from S. aureus-induced renal abscess, resulting in a significant survival advantage. These findings indicate that CHA is a promising therapeutic compound against SrtA during S. aureus infections.
Sortase A (SrtA) is a cysteine transpeptidase of most Gram-positive bacteria that is responsible for the anchorage of many surface protein virulence factors to the cell wall layer. SrtA mutants are unable to display surface proteins and are defective in the establishment of infections without affecting microbial viability. In this study, we report that quercitrin (QEN), a natural compound that does not affect Staphylococcus aureus growth, can inhibit the catalytic activity of SrtA in fibrinogen (Fg) cell-clumping and immobilized fibronectin (Fn) adhesion assays. Molecular dynamics simulations and mutagenesis assays suggest that QEN binds to the binding sites of the SrtA G167A and V193A mutants. These findings indicate that QEN is a potential lead compound for the development of new anti-virulence agents against S. aureus infections.
Staphylococcus aureus (S. aureus) is a major cause of infection in hospitals and communities.Widespread dissemination of multi-drug resistant S. aureus is a serious threat to the health of humans and animals. An anti-virulence strategy has been widely considered as an alternative therapeutic approach. Inhibitors of virulence factors are able to treat S. aureus infections without influencing the growth or viability of bacteria and rarely lead to bacterial resistance. Sortase A (SrtA) is a membrane-associated cysteine transpeptidase that catalyzes up to 25 surface proteins that covalently bind to cell wall peptidoglycans. In S. aureus, most of these surface proteins have been identified as important virulence factors that are vital in bacterial pathogenesis. In the present study, we show that acacetin, a natural flavonoid compound, inhibits the activity of SrtA in S. aureus (IC 50 = 36.46 ± 4.69 µg/mL, 128 µM) which affects the assembly of protein A (SpA) to cell walls and reduces the binding of S. aureus to fibrinogen (Fg). The mechanism of the interaction between acacetin and SrtA were preliminarily discussed using molecular dynamics simulations. The results suggested that acacetin adopted a compact conformation binding at the pocket of the SrtA via residues Arg-139 and Lys-140. By performing an animal infection model, we demonstrated that acacetin was able to protect mice from renal abscess formation induced by S. aureus and significantly increased survival rates. Taken together, these findings suggest that acacetin may be a promising candidate for the development of anti-S. aureus drugs.
Sortase A (SrtA) is a cysteine transpeptidase and virulence factor from Staphylococcus aureus (S. aureus) that catalyses the attachment and display of surface proteins on the cell wall, thereby mediating bacterial adhesion to host tissues, host-cell entry and evasion of the immune response. As a result, SrtA has become an important target in the development of therapies for S. aureus infections. In this study, we used the new reference strain S. aureus Newman D2C to investigate the role of SrtA in a murine model of bloodstream infection, when the impact of coagulase and haemolysin is excluded. The results suggested that deletion of SrtA reduced the bacterial burden on the heart, liver and kidneys by blunting the host proinflammatory cytokine response at an early point in infection. Kidneys, but not heart or liver, formed abscesses on the sixth day following non-lethal infection, and this effect was diminished by SrtA mutation. These findings indicate that SrtA is a determining virulence factor in lethality and formation of renal abscesses in mice followed by S. aureus bloodstream infection. We have thus established a convenient in vitro and mouse model for developing SrtA-targeted therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.