We introduce a Markov-model-based framework for Moving Target Defense (MTD) analysis. The framework allows modeling of broad range of MTD strategies, provides general theorems about how the probability of a successful adversary defeating an MTD strategy is related to the amount of time/cost spent by the adversary, and shows how a multi-level composition of MTD strategies can be analyzed by a straightforward combination of the analysis for each one of these strategies. Within the proposed framework we define the concept of security capacity which measures the strength or effectiveness of an MTD strategy: the security capacity depends on MTD specific parameters and more general system parameters. We apply our framework to two concrete MTD strategies.
Protoporphyrin IX (PPIX) produced following the administration of exogenous 5d-aminolevulinic acid is clinically approved for photodynamic therapy and fluorescence-guided resection in various jurisdictions around the world. For both applications, quantification of PPIX forms the basis for accurate therapeutic dose calculation and identification of malignant tissues for resection. While it is well established that the PPIX synthesis and accumulation rates are subject to the cell’s biochemical microenvironment, the effect of the physical microenvironment, such as matrix stiffness, has received little attention to date. Here we studied the proliferation rate and PPIX synthesis and accumulation in two glioma cell lines U373 and U118 cultured under five different substrate conditions, including the conventional tissue culture plastic and polyacrylamide gels that simulated tissue stiffness of normal brain (1 kPa) and glioblastoma tumors (12 kPa). We found that the proliferation rate increased with substrate stiffness for both cell lines, but not in a linear fashion. PPIX concentration was significantly higher in cells cultured on tissue-simulating gels than on the much stiffer tissue culture plastic for both cell lines. These findings, albeit preliminary, suggest that the physical microenvironment might be an important determinant of tumor aggressiveness and PPIX synthesis in glioma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.