Pareto type II distribution has been studied from many statisticians due to its important role in reliability modelling and lifetime testing. In this article, we introduce two bivariate Pareto Type II distributions; one is derived from copula and the other is based on mixture and copula. Parameter Estimates of the proposed distribution are obtained using the maximum likelihood method. The performance of the proposed bivariate distributions is examined using a simulation study. Finally, we analyze one data set under the proposed distributions to illustrate their flexibility for real-life applications.
In this paper two new bivariate Pareto Type I distributions are introduced. The first distribution is based on copula, and the second distribution is based on mixture of and copula. Maximum likelihood and Bayesian estimations are used to estimate the parameters of the proposed distribution. A Monte Carlo Simulation study is carried out to study the behavior of the proposed distributions. A real data set is analyzed to illustrate the performance and flexibility of the proposed distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.