Internal (neuronal) representations in the brain are modified by our experiences, and this phenomenon is not unique to sensory and motor systems. Here, we show that different impressions obtained through social interaction with a variety of agents uniquely modulate activity of dorsal and ventral pathways of the brain network that mediates human social behavior. We scanned brain activity with functional magnetic resonance imaging (fMRI) in 16 healthy volunteers when they performed a simple matching-pennies game with a human, human-like android, mechanical robot, interactive robot, and a computer. Before playing this game in the scanner, participants experienced social interactions with each opponent separately and scored their initial impressions using two questionnaires. We found that the participants perceived opponents in two mental dimensions: one represented "mind-holderness" in which participants attributed anthropomorphic impressions to some of the opponents that had mental functions, while the other dimension represented "mind-readerness" in which participants characterized opponents as intelligent. Interestingly, this "mind-readerness" dimension correlated to participants frequently changing their game tactic to prevent opponents from envisioning their strategy, and this was corroborated by increased entropy during the game. We also found that the two factors separately modulated activity in distinct social brain regions. Specifically, mind-holderness modulated activity in the dorsal aspect of the temporoparietal junction (TPJ) and medial prefrontal and posterior paracingulate cortices, while mind-readerness modulated activity in the ventral aspect of TPJ and the temporal pole. These results clearly demonstrate that activity in social brain networks is modulated through pre-scanning experiences of social interaction with a variety of agents. Furthermore, our findings elucidated the existence of two distinct functional networks in the social human brain. Social interaction with anthropomorphic or intelligent-looking agents may distinctly shape the internal representation of our social brain, which may in turn determine how we behave for various agents that we encounter in our society.
Research suggests that many individuals with autism spectrum disorder (ASD) often demonstrate challenges providing appropriate levels of information during conversational interchanges. Considering the preference of individuals with ASD, and recent rapid technological advances, robotic systems may yield promise in promoting certain aspects of conversation and interaction such as self-disclosure of appropriate personal information. In the current work, we evaluated personal disclosures of events with specific emotional content across two differing robotic systems (android and simplistic humanoid) and human interactions. Nineteen participants were enrolled in this study: 11 (2 women and 9 men) adolescents with ASD and 8 (4 women and 4 men) adolescents with TD. Each participant completed a sequence of three interactions in a random order. Results indicated differences regarding comfort level and length of disclosures between adolescents with ASD and typically developing (TD) controls in relation to system interactions. Specifically, adolescents with ASD showed a preference for interacting with the robotic systems compared to TD controls and demonstrated lengthier disclosures when interacting with the visually simple humanoid robot compared to interacting with human interviewer. The findings suggest that robotic systems may be useful in eliciting and promoting aspects of social communication such as self-disclosure for some individuals with ASD.
Schizophrenia patients have impairments at several levels of cognition including visual attention (eye movements), perception, and social cognition. However, it remains unclear how lower-level cognitive deficits influence higher-level cognition. To elucidate the hierarchical path linking deficient cognitions, we focused on biological motion perception, which is involved in both the early stage of visual perception (attention) and higher social cognition, and is impaired in schizophrenia. Seventeen schizophrenia patients and 18 healthy controls participated in the study. Using point-light walker stimuli, we examined eye movements during biological motion perception in schizophrenia. We assessed relationships among eye movements, biological motion perception and empathy. In the biological motion detection task, schizophrenia patients showed lower accuracy and fixated longer than healthy controls. As opposed to controls, patients exhibiting longer fixation durations and fewer numbers of fixations demonstrated higher accuracy. Additionally, in the patient group, the correlations between accuracy and affective empathy index and between eye movement index and affective empathy index were significant. The altered gaze patterns in patients indicate that top-down attention compensates for impaired bottom-up attention. Furthermore, aberrant eye movements might lead to deficits in biological motion perception and finally link to social cognitive impairments. The current findings merit further investigation for understanding the mechanism of social cognitive training and its development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.