Key Words: cardiomyogenesis Ⅲ human mesenchymal stem cell Ⅲ immunologic tolerance Ⅲ myocardial infarction Ⅲ cell-based therapy A lthough embryonic stem cells 1 and induced pluripotent stem (iPS) cells 2 can be differentiated into cells of various organs, including cardiomyocytes, there are many underlining problems to overcome before clinical applications can be used, eg, tumorigenicity. 3 Autografts of iPS cells may not cause immunologic rejection; ironically, however, possible neoplasm formation would cause a serious problem because the neoplasm would not be rejected by the withdrawal of immunosuppressive agents. On the other hand, mesenchymal stem cells (MSCs) have recently been used for clinical application, and their safety and feasibility in cardiac stem cell-based therapy have been demonstrated. 4 Thus, MSCs are a more important cellular source for stem cell-based therapy from a practical point of view.The efficacy of human bone marrow-derived MSCs (BMMSCs) was still limited, 5 however, because of low efficiency for cardiomyogenic transdifferentiation. 6 We previously reported that non-marrow-derived mesenchymal cells had higher cardiomyogenic transdifferentiation efficiency, eg, menstrual blood-derived mesenchymal cells (MMCs), 7 umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), 8 and placental chorionic plate-derived mesenchymal cells (PCPCs). 9 These cells are thought to be used by an allograft; therefore, problems of immunologic rejection arise. However, an allograft may be superior to an autograft in several ways. Taking into account the background condition of the patient (eg, metabolic disease or age), Original received July 16, 2009; revision received April 14, 2010; accepted April 22, 2010 16 reported significant recovery of cardiac function by the rat amnion-derived cell transplantation in rat myocardial infarction (MI) model, however, they failed to show clear evidence of cardiomyogenic differentiation in vivo. Therefore, in the present study, we attempted to show: (1) the powerful cardiomyogenic transdifferentiation potential of our isolated hAMCs, and the beneficial effect of transplantation of hAMCs on cardiac function in vivo; (2) the induction of immunologic tolerance so that hAMCs can be a powerful allograftable stem cell source without either the administration of immunosuppressive agents or matching of MHC typing; (3) the mechanism of induction of tolerance; and (4) the close relationship between the cardiomyogenic transdifferentiation of mesenchymal cells and the process of immunologic tolerance. MethodsAn expanded Methods section is available in the Online Data Supplement at http://circres.ahajournals.org. Isolation and Culture of Human Amniotic Membrane-Derived Mesenchymal CellsHuman amniotic membrane was collected, with informed consent from individual patients, after delivery of a male neonate. The study was approved by the ethics committee of Keio University School of Medicine. The precise methods for culture have been described previously. 9,17 Detail is shown in...
We demonstrated that SF-MSCs, similar to synovium MSCs, increased in number after IA ligament injury and surgery without marked alteration of the properties.
Mesenchymal stem cells (MSCs) can be obtained from various tissues, and contain common features. However, an increasing number of reports have described variant properties dependent of cell sources. We examined (1) whether MSCs existed in several intraarticular tissues, (2) whether gene expression profiles in intraarticular tissue MSCs closely resembled each other, and (3) whether identified genes were specific to intraarticular tissue MSCs. Human synovium, meniscus, intraarticular ligament, muscle, adipose tissue, and bone marrow were harvested, and colony-forming cells were analyzed. All these cells showed multipotentiality and surface markers typical of MSCs. Gene profiles of intraarticular tissue MSCs and chondrocytes were closer to each other than those of extraarticular tissues MSCs. Among three characteristic genes specific for intraarticular tissue MSCs, we focused on proline arginine-rich end leucine-rich repeat protein (PRELP). Higher expression of PRELP was confirmed in chondrocytes and intraarticular tissue MSCs among three elderly and three young donors. Synovium MSCs stably expressed PRELP, contrarily, bone marrow MSCs increased PRELP expression during in vitro chondrogenesis. In conclusion, MSCs could be isolated from various intraarticular tissues including meniscus and ligament, gene expression profiles of intraarticular tissue MSCs closely resembled each other, and the higher expression of PRELP was characteristic of intraarticular tissue MSCs. ß
Murine bone marrow stromal cells differentiate not only into mesodermal derivatives, such as osteocytes, chondrocytes, adipocytes, skeletal myocytes, and cardiomyocytes, but also into neuroectodermal cells in vitro.Human bone marrow stromal cells are easy to isolate but difficult to study because of their limited life span. To overcome this problem, we attempted to prolong the life span of bone marrow stromal cells and investigated whether bone marrow stromal cells modified with bmi-1, hTERT, E6, and E7 retained their differentiated capability, or multipotency. In this study, we demonstrated that the life span of bone marrow stromal cells derived from a 91-year-old donor could be extended and that the stromal cells with an extended life span differentiated into neuronal cells in vitro. We examined the neuronally differentiated cells morphologically, physiologically, and biologically and compared the gene profiles of undifferentiated and differentiated cells. The neuronally differentiated cells exhibited characteristics similar to those of midbrain neuronal progenitors. Thus, the results of this study support the possible use of autologous-cell graft systems to treat central nervous system diseases in geriatric patients.Murine and human bone marrow stromal cells differentiate into osteoblasts (2), chondrocytes (13), skeletal myocytes, adipocytes, and cardiomyocytes (24) in vitro and thus are a useful cell source for bone regeneration (26) and in vivo cardiovasculogenesis (11). However, recent studies suggest that bone marrow stromal cells can also differentiate into a neuronal lineage (22), and murine bone marrow-derived multipotent adult progenitor cells differentiate into dopaminergic neuronal cells (16). Since the use of bone marrow stromal cells entails no ethical or immunological problems, and bone marrow aspiration is an established routine procedure, they may be a useful source of cells for transplantation.Large numbers of cells may be necessary for repairing damaged human tissues to restore function. However, there have been no reports of a sufficient number of differentiated neurons ever having been obtained from human marrow stromal cells. One reason is that normal human cells undergo a limited number of divisions in culture and then enter a nondividing state referred to as "senescence." Senescence is classified into two categories: "stress-induced premature senescence," or "telomere-independent senescence," and "replicative senescence," or "telomere-dependent senescence" (3, 5, 38). p16 Ink4a (p16), a cyclin-dependent kinase (CDK) inhibitor, is induced by certain oncogenes and other damage or stress signals and is required for "premature senescence" in human mammary epithelial cells and keratinocytes. p16 inhibits dephosphorylation of pRb by Cdk4/6-cyclin D, and hypophosphorylated pRb actively represses the genes required for the S phase by sequestering the E2F transcription factors. "Replicative senescence" is caused by telomere size reduction during successive cell divisions because of the chromosome...
Objective. Synovial mesenchymal stem cells (MSCs) are a promising cell source for cartilage regeneration due to their high chondrogenic potential. For clinical safety, autologous human serum should be used instead of fetal bovine serum (FBS). We undertook this study to compare the 2 types of serum for their enhancement of the proliferation and chondrogenic potentials of synovial MSCs and to investigate the mechanisms of the differences. Since effectiveness of the sera might depend on the origin of the MSCs, we also examined bone marrow MSCs.Methods. Synovium, bone marrow, and peripheral blood were obtained from 18 donors. Synovial and bone marrow MSCs were cultured with autologous human serum or FBS and analyzed. In addition, rabbit synovial MSCs cultured with autologous serum or FBS were transplanted into full-thickness cartilage defects of the knees of the same rabbits.Results. Human synovial MSCs expanded more in human serum than in FBS, and the opposite results were obtained with bone marrow MSCs. Hierarchical clustering analysis showed that the cell source, rather than the type of serum, affected the gene expression profile. Human serum contained high levels of plateletderived growth factor (PDGF), synovial MSCs expressed higher levels of PDGF receptor ␣ than did bone marrow MSCs, and neutralizing PDGF decreased the proliferation of synovial MSCs with autologous human serum. Although the in vitro chondrogenic potential of human synovial MSCs was affected by the serum source, the in vivo chondrogenic potential of rabbit synovial MSCs was similar in autologous serum and FBS groups.Conclusion. Autologous serum predominates in increasing the proliferation of synovial MSCs with chondrogenic potential through PDGF signaling.Mesenchymal stem cells (MSCs) have been fascinating for regenerative medicine because of their multidifferentiation potentials. MSCs from bone marrow, currently the most popular source, are usually expanded with fetal bovine serum (FBS) for research (1) and even for clinical use (2). However, supplementation with FBS carries several risks, such as disease transmission and immune reaction (3-6). Increasing the safety of medical treatments with MSCs requires the use of autologous human serum. Studies of bone marrow MSCs cultured with autologous human serum are still limited, and the usability of autologous human serum is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.