Background Transformer is an attention-based architecture proven the state-of-the-art model in natural language processing (NLP). To reduce the difficulty of beginning to use transformer-based models in medical language understanding and expand the capability of the scikit-learn toolkit in deep learning, we proposed an easy to learn Python toolkit named transformers-sklearn. By wrapping the interfaces of transformers in only three functions (i.e., fit, score, and predict), transformers-sklearn combines the advantages of the transformers and scikit-learn toolkits. Methods In transformers-sklearn, three Python classes were implemented, namely, BERTologyClassifier for the classification task, BERTologyNERClassifier for the named entity recognition (NER) task, and BERTologyRegressor for the regression task. Each class contains three methods, i.e., fit for fine-tuning transformer-based models with the training dataset, score for evaluating the performance of the fine-tuned model, and predict for predicting the labels of the test dataset. transformers-sklearn is a user-friendly toolkit that (1) Is customizable via a few parameters (e.g., model_name_or_path and model_type), (2) Supports multilingual NLP tasks, and (3) Requires less coding. The input data format is automatically generated by transformers-sklearn with the annotated corpus. Newcomers only need to prepare the dataset. The model framework and training methods are predefined in transformers-sklearn. Results We collected four open-source medical language datasets, including TrialClassification for Chinese medical trial text multi label classification, BC5CDR for English biomedical text name entity recognition, DiabetesNER for Chinese diabetes entity recognition and BIOSSES for English biomedical sentence similarity estimation. In the four medical NLP tasks, the average code size of our script is 45 lines/task, which is one-sixth the size of transformers’ script. The experimental results show that transformers-sklearn based on pretrained BERT models achieved macro F1 scores of 0.8225, 0.8703 and 0.6908, respectively, on the TrialClassification, BC5CDR and DiabetesNER tasks and a Pearson correlation of 0.8260 on the BIOSSES task, which is consistent with the results of transformers. Conclusions The proposed toolkit could help newcomers address medical language understanding tasks using the scikit-learn coding style easily. The code and tutorials of transformers-sklearn are available at https://doi.org/10.5281/zenodo.4453803. In future, more medical language understanding tasks will be supported to improve the applications of transformers_sklearn.
Background The coronavirus disease (COVID-19), a pneumonia caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has shown its destructiveness with more than one million confirmed cases and dozens of thousands of death, which is highly contagious and still spreading globally. World-wide studies have been conducted aiming to understand COVID-19 mechanism, transmission, clinical features, etc. A cross-language terminology of COVID-19 is essential for improving knowledge sharing and scientific discovery dissemination.Methods We developed a bilingual terminology of COVID-19 with mapping Chinese and English terms. The terminology construction follows the workflow (1) Classification schema design; (2) Concepts and sub-concepts assignment; (3) Terminology editing strategy; (4) Terminology property development; (5) Online deployment. We built open access for the terminology named as COVID Term, providing search, browse, and download services.Results The proposed COVID Term include 10 categories: disease, anatomic site, clinical manifestation, demographic and socioeconomic characteristics, living organism, qualifiers, psychological assistance, medical equipment, instruments and materials, epidemic prevention and control, diagnosis and treatment technique respectively. In total, COVID Terms covered 464 concepts with 724 Chinese terms and 887 English terms. All terms are openly accessible online (COVID Term: http://covidterm.imicams.ac.cn ).Conclusions COVID Term is a bilingual terminology focused on COVID-19, the epidemic pneumonia with a high risk of infection around the world. It will provide updated bilingual terms of the disease to help health providers and medical professionals retrieve and exchange information and knowledge in multiple languages. COVID Term was released in machine-readable formats (e.g., XML and JSON), which would contribute to the machine translation and advanced intelligent techniques.
Background The coronavirus disease (COVID-19), a pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown its destructiveness with more than one million confirmed cases and dozens of thousands of death, which is highly contagious and still spreading globally. World-wide studies have been conducted aiming to understand the COVID-19 mechanism, transmission, clinical features, etc. A cross-language terminology of COVID-19 is essential for improving knowledge sharing and scientific discovery dissemination. Methods We developed a bilingual terminology of COVID-19 named COVID Term with mapping Chinese and English terms. The terminology was constructed as follows: (1) Classification schema design; (2) Concept representation model building; (3) Term source selection and term extraction; (4) Hierarchical structure construction; (5) Quality control (6) Web service. We built open access for the terminology, providing search, browse, and download services. Results The proposed COVID Term include 10 categories: disease, anatomic site, clinical manifestation, demographic and socioeconomic characteristics, living organism, qualifiers, psychological assistance, medical equipment, instruments and materials, epidemic prevention and control, diagnosis and treatment technique respectively. In total, COVID Terms covered 464 concepts with 724 Chinese terms and 887 English terms. All terms are openly available online (COVID Term URL: http://covidterm.imicams.ac.cn). Conclusions COVID Term is a bilingual terminology focused on COVID-19, the epidemic pneumonia with a high risk of infection around the world. It will provide updated bilingual terms of the disease to help health providers and medical professionals retrieve and exchange information and knowledge in multiple languages. COVID Term was released in machine-readable formats (e.g., XML and JSON), which would contribute to the information retrieval, machine translation and advanced intelligent techniques application.
BACKGROUND Atherosclerotic cerebrovascular disease could result in a great number of deaths and disabilities. However, it did not acquire enough attention. Up till now, less information, statistics, or clear consensus on the disease was revealed. Thus, no systematic concept datasets were released to help clinicians in the field to clarify the scope, assist research, and offer maximized value. OBJECTIVE The aims of this study were to (1) develop a comprehensive cross-lingual atherosclerotic cerebrovascular disease ontology. (2) describe the workflow, schema, and hierarchical structure, and the highlighted content of the ontology (3) design a brand-new rehabilitation ontology which was an important part overlooked in the existing ontologies (4) implement the evaluation of the proposed ontology (5) apply the proposed ontology to real-world scenarios and electronic health records to realize information retrieval, named entity recognition, novel expression discovery, and knowledge fusion. METHODS We implemented 9 steps based on the ontology development 101 methodologies combined with expert opinions. The final ontology included clinical requirements collection and specification, background investigation and knowledge acquisition, ontology selection and reuse, scope identification, schema definition, concept extraction, concept extension, ontology verification, and ontology evaluation. RESULTS The current ontology included 10 top-level classes, respectively clinical manifestation, comorbidity, complication, diagnosis, model of atherosclerotic cerebrovascular disease, pathogenesis, prevention, rehabilitation, risk factor, and treatment. Totally, there are 1715 concepts in the 11-level ontology, covering 4588 Chinese terms, 6617 English terms, and 972 definitions. The ontology could be applied in real-world scenarios such as information retrieval, new expression discovery, named entity recognition, and knowledge fusion, and the use case proved that it could offer satisfying support to related medical scenarios. CONCLUSIONS The proposed ontology provided a clear set of cross-lingual concepts and terms with an explicit hierarchical structure, helping scientific researchers to quickly retrieve relevant medical literature, assisting data scientists to efficiently identify relevant contents in electronic health records, and providing a clear domain framework for academic reference.
Background The increasing global cancer incidence corresponds to serious health impact in countries worldwide. Knowledge-powered health system in different languages would enhance clinicians’ healthcare practice, patients’ health management and public health literacy. High-quality corpus containing cancer information is the necessary foundation of cancer education. Massive non-structural information resources exist in clinical narratives, electronic health records (EHR) etc. They can only be used for training AI models after being transformed into structured corpus. However, the scarcity of multilingual cancer corpus limits the intelligent processing, such as machine translation in medical scenarios. Thus, we created the cancer specific cross-lingual corpus and open it to the public for academic use. Methods Aiming to build an English-Chinese cancer parallel corpus, we developed a workflow of seven steps including data retrieval, data parsing, data processing, corpus implementation, assessment verification, corpus release, and application. We applied the workflow to a cross-lingual, comprehensive and authoritative cancer information resource, PDQ (Physician Data Query). We constructed, validated and released the parallel corpus named as ECCParaCorp, made it openly accessible online. Results The proposed English-Chinese Cancer Parallel Corpus (ECCParaCorp) consists of 6685 aligned text pairs in Xml, Excel, Csv format, containing 5190 sentence pairs, 1083 phrase pairs and 412 word pairs, which involved information of 6 cancers including breast cancer, liver cancer, lung cancer, esophageal cancer, colorectal cancer, and stomach cancer, and 3 cancer themes containing cancer prevention, screening, and treatment. All data in the parallel corpus are online, available for users to browse and download ( http://www.phoc.org.cn/ECCParaCorp/ ). Conclusions ECCParaCorp is a parallel corpus focused on cancer in a cross-lingual form, which is openly accessible. It would make up the imbalance of scarce multilingual corpus resources, bridge the gap between human readable information and machine understanding data resources, and would contribute to intelligent technology application as a preparatory data foundation e.g. cancer-related machine translation , cancer system development towards medical education, and disease-oriented knowledge extraction .
Background: The coronavirus disease (COVID-19), a pneumonia caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has shown its destructiveness with more than one million confirmed cases and dozens of thousands of death, which is highly contagious and still spreading globally. World-wide studies have been conducted aiming to understand the COVID-19 mechanism, transmission, clinical features, etc. A cross-language terminology of COVID-19 is essential for improving knowledge sharing and scientific discovery dissemination.Methods: We developed a bilingual terminology of COVID-19 named COVID Term with mapping Chinese and English terms. The terminology was constructed as follows: (1) Classification schema design; (2) Concept representation model building; (3) Term source selection and term extraction; (4) Hierarchical structure construction; (5) Quality control (6) Web service. We built open access for the terminology, providing search, browse, and download services. Results: The proposed COVID Term include 10 categories: disease, anatomic site, clinical manifestation, demographic and socioeconomic characteristics, living organism, qualifiers, psychological assistance, medical equipment, instruments and materials, epidemic prevention and control, diagnosis and treatment technique respectively. In total, COVID Terms covered 464 concepts with 724 Chinese terms and 887 English terms. All terms are openly available online (COVID Term URL: http://covidterm.imicams.ac.cn ). Conclusions: COVID Term is a bilingual terminology focused on COVID-19, the epidemic pneumonia with a high risk of infection around the world. It will provide updated bilingual terms of the disease to help health providers and medical professionals retrieve and exchange information and knowledge in multiple languages. COVID Term was released in machine-readable formats (e.g., XML and JSON), which would contribute to the information retrieval, machine translation and advanced intelligent techniques application. Keywords: COVID-19, Terminology System, Bilingual, Medical Terminology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.