Kitoza samples collected from producers in Madagascar were analyzed for their physicochemical and microbial properties. Lactic acid bacteria and coagulase‐negative staphylococci were the two codominant populations with average counts of 6–7 log cfu/g. Good hygienic practices were sometimes lacking but samples were not contaminated with Salmonella , Clostridium perfringens , and Bacillus cereus and only once with Listeria monocytogenes . Staphylococcus aureus was found occasionally with higher counts in salted/dried products than in salted/smoked products. Moisture, protein, fat, and salt contents varied considerably and were on average 41.5, 43.5, 14.3, and 3.3 g/100 g, respectively, and water activity was 0.893 on average. Smoked kitoza showed higher moisture content compared to dried kitoza. Most of the smoked kitoza had a water activity higher than 0.9 which is not in accordance with their storage at ambient temperatures. Benzo(a)pyrene content was above 2 µg/kg in 11 out of 30 smoked samples (17 ± 16.5 µg/kg on average).
This work was designed to study the antimicrobial activity of Crotalaria bernieri Baill. (Fabaceae). Extracts from leaf, root, pod and seed using hexane, ethyl acetate and methanol were tested in vitro for their activity against 17 bacteria, 5 fungi (3 yeasts and 2 molds) using disc diffusion and micro dilution methods. At the concentration of 1 mg/disc, all the extracts exhibited antimicrobial activity depending on the plant part and the extraction method used. The most sensitive germs were Salmonella enteridis, Streptococcus pyogenes and Candida guilliermondii with inhibition zone diameter (IZD) of 11 mm, 15 mm and 13 mm respectively. Most of extracts showed, broad activity spectrum varying from one extract to another. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) of all extracts were recorded. Ten extracts displayed an excellent effect (MIC < 100 µg/ml), 8 a moderate effect (MIC from 100 to 500 µg/ml), 5 a weak effect (MIC from 500 to 1000 µg/ml) and the others were ineffective (MIC > 1000 µg/ml). Leaf methanol extracts were the most efficient and Gram positive bacteria the most sensitive. All extracts had bactericidal (MBC/MIC ≤ 4) or fungicidal action (MFC/MIC ≤ 4) in certain microorganisms and bacteriostatic (MBC/MIC > 4) or fungistatic action (MFC/MIC > 4) in others. Antimicrobial activity might be due to tannins, polyphenols, steroids, triterpenes and flavonoids that were present in most of the plant organs, but alkaloids in leaf and pod and saponosides in root might also be involved. C. bernieri with the effectiveness of all its parts, the variety of its secondary metabolites, the great number of sensitive pathogen microorganisms and its ubiquity make this plant species an interesting source of antimicrobial agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.