Ultraviolet radiation is a pathogenic factor in various diseases, e. g., autoimmune disorders such as lupus erythematosus. On the other hand, endogenous retroviruses are discussed as etiologic agents in lupus erythematosus. Therefore, we investigated the influence of ultraviolet irradiation on expression of human endogenous retroviral sequences and human endogenous retroviral sequence promoter-driven transcription of cellular genes using human epidermal keratinocytes as a model system. First, conserved sequences of endogenous retroviral pol genes were amplified from cellular mRNA by reverse transcriptase polymerase chain reaction with degenerate oligonucleotide primers. Polymerase chain reaction products were hybridized in a reverse dot blot hybridization assay to a representative number of distinct cloned human endogenous retroviral pol fragments. Using this method, we could show that irradiation with 30 mJ per cm2 ultraviolet B activates transcription of various endogenous retroviral pol sequences in primary epidermal keratinocytes as well as in a spontaneously immortalized keratinocyte cell line (HaCaT). Interestingly, some of these sequences were found to be closely related to pol sequences of human endogenous retroviral sequences which have been shown to be expressed in autoimmune patients. Analysis of human endogenous retroviral pol expression in vivo using skin biopsies of lupus erythematosus patients revealed similar activation patterns. In a second approach, ultraviolet B- induced chimeric transcripts were isolated which are initiated by human endogenous retroviral promoters and proceed into cellular sequences using a newly established modified differential display polymerase chain reaction technique. The activation of human endogenous retroviral sequence transcription by ultraviolet B may contribute to the pathogenesis of lupus erythematosus, where inappropriate antigenic presentation of ultraviolet B-induced viral and cellular proteins could stimulate autoantibody production.
Site-directed mutagenesis and deletions were used to study mitochondrial import of a major yeast adenylate kinase, AkyZp. This enzyme lacks a cleavable prescquence and occurs in active and apparently unprocessed form both in mitochondria and cytoplasm. Mutations were applied to regions known to be surface-exposed and to diverge between short and long isoforms. In vertebrates, short adenylate kinase lsozymes occur exclusively in the cytoplasm, whereas long versions of the enzyme have mitochondrial locations. Mutations in the extra loop of the yeast (long-form) enzyme did not affect mitochondrial import of the protein, whereas variants altered in the central, N-or C-terminal parts frequently disptayed increased or, in the case of a deletion ofthe 8 N-terminal triplets, decreased import cfhciencies. Although the N-terminus is important for targeting adenylatc kinase to mitochondria, other parameters like internal squsnce determinants and folding velocity of the nascent protein may also play a role, S~ccAurorrtycr ccrrvisiuc: ATP:AMP phosphotransferase; in vitro mutagenesis; mitochondrial import
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.