MicroRNAs (miRNAs) control gene expression through both translational repression and degradation of target messenger RNAs (mRNAs). However, the interplay between these processes and the precise molecular mechanisms involved remain unclear. Here, we show that translational inhibition is the primary event required for mRNA degradation. Translational inhibition depends on miRNAs impairing the function of the eIF4F initiation complex. We define the RNA helicase eIF4A2 as the key factor of eIF4F through which miRNAs function. We uncover a correlation between the presence of miRNA target sites in the 3' untranslated region (3'UTR) of mRNAs and secondary structure in the 5'UTR and show that mRNAs with unstructured 5'UTRs are refractory to miRNA repression. These data support a linear model for miRNA-mediated gene regulation in which translational repression via eIF4A2 is required first, followed by mRNA destabilization.
Control of gene expression is achieved at various levels. Translational control becomes crucial in the absence of transcription, such as occurs in early developmental stages. One of the initiating events in translation is that the 40 S subunit of the ribosome binds the mRNA at the 5'-cap structure and scans the 5'-untranslated region (5'-UTR) for AUG initiation codons. AUG codons upstream of the main open reading frame can induce formation of a translation-competent ribosome that may translate and (i) terminate and re-initiate, (ii) terminate and leave the mRNA, resulting in down-regulation of translation of the main open reading frame, or (iii) synthesize an N-terminally extended protein. In the present review we discuss how upstream AUGs can control the expression of the main open reading frame, and a comparison is made with other elements in the 5'-UTR that control mRNA translation, such as hairpins and internal ribosome entry sites. Recent data indicate the flexibility of controlling translation initiation, and how the mode of ribosome entry on the mRNA as well as the elements in the 5'-UTR can accurately regulate the amount of protein synthesized from a specific mRNA.
Elongation of the poly(A) tails of specific mRNAs in the cytoplasm is a crucial regulatory step in oogenesis and early development of many animal species. The best studied example is the regulation of translation by cytoplasmic polyadenylation elements (CPEs) in the 3′ untranslated region of mRNAs involved in Xenopus oocyte maturation. In this review we discuss the mechanism of translational control by the CPE binding protein (CPEB) in Xenopus oocytes as follows:The cytoplasmic polyadenylation machinery such as CPEB, the subunits of cleavage and polyadenylation specificity factor (CPSF), symplekin, Gld-2 and poly(A) polymerase (PAP).The signal transduction that leads to the activation of CPE-mediated polyadenylation during oocyte maturation, including the potential roles of kinases such as MAPK, Aurora A, CamKII, cdk1/Ringo and cdk1/cyclin B.The role of deadenylation and translational repression, including the potential involvement of PARN, CCR4/NOT, maskin, pumilio, Xp54 (Ddx6, Rck), other P-body components and isoforms of the cap binding initiation factor eIF4E.Finally we discuss some of the remaining questions regarding the mechanisms of translational regulation by cytoplasmic polyadenylation and give our view on where our knowledge is likely to be expanded in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.