The dynamic characteristics of the wall lift and drag of the rigid sphere moving parallel to the single wall surface in the static viscosity laminar flow field are numerically studied, on the basis of the three-dimensional numerical simulation method of the quasi-steady “relativity of motion.” The results show that: (1) The wall surface acts to increase the drag; (2) On the near wall, the lift coefficient decreases as the Reynolds number between the sphere and the wall increase when Re < 100. However, when Re > 100, the lift coefficient increases sharply; (3) On the far wall, there is no wall effect when Re > 10, consistent with the unbounded flow, but the wall effect still exists when Re < 10; and (4) The particle rotation has few influences on drag but slightly increases the lift. And the lift induced by rotation is mainly determined by the surrounding fluid pressure. These results all contribute to the study of the hydrodynamic behavior of particles in the boundary and deepen the understanding of the phenomenon of particle transport in the wall effect layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.